{"title":"Compact Modeling of Process Variation and Reliability Predictions for Nanosheet Gate-All-Around FET","authors":"Mengge Jin;Chao Wang;Siyi Xu;Yang Shen;Yuhang Zhang;Bingyi Ye;Shaoqiang Chen;Xinyu Dong;Fei Lu;Ziyu Liu;Xiaojin Li;Yanling Shi;Yabin Sun","doi":"10.1109/TDMR.2025.3589379","DOIUrl":null,"url":null,"abstract":"In this work, a semi-analytical compact model is developed to quantify the impact of random process variations on nanosheet field-effect transistors (NSFETs) at the 3nm technology node. Three primary sources of variability work function variation (WFV), line width roughness (LWR), and gate edge roughness (GER) are systematically analyzed. By extracting and calibrating empirical parameters, the proposed model accurately captures the statistical trends of process-induced fluctuations across a broad range of conditions. The model is integrated into the BSIM-CMG framework for circuit-level variability assessment, enabling comprehensive evaluation of performance deviations. Simulation results indicate that WFV dominates the overall reliability degradation, leading to energy variations from -12% to +24%. This study provides a refined predictive framework for assessing process-induced reliability risks and optimizing circuit design in advanced semiconductor technologies.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"707-713"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11080331/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a semi-analytical compact model is developed to quantify the impact of random process variations on nanosheet field-effect transistors (NSFETs) at the 3nm technology node. Three primary sources of variability work function variation (WFV), line width roughness (LWR), and gate edge roughness (GER) are systematically analyzed. By extracting and calibrating empirical parameters, the proposed model accurately captures the statistical trends of process-induced fluctuations across a broad range of conditions. The model is integrated into the BSIM-CMG framework for circuit-level variability assessment, enabling comprehensive evaluation of performance deviations. Simulation results indicate that WFV dominates the overall reliability degradation, leading to energy variations from -12% to +24%. This study provides a refined predictive framework for assessing process-induced reliability risks and optimizing circuit design in advanced semiconductor technologies.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.