A transmission electron microscopy study of orientation relationships and interfacial reaction products in GdFe0.5Cr0.5O3 films grown on (001) SrTiO3 substrates by solution synthesis
IF 2 4区 材料科学Q3 MATERIALS SCIENCE, COATINGS & FILMS
{"title":"A transmission electron microscopy study of orientation relationships and interfacial reaction products in GdFe0.5Cr0.5O3 films grown on (001) SrTiO3 substrates by solution synthesis","authors":"S. Rommel , J. Pfund , M. Jain , M. Aindow","doi":"10.1016/j.tsf.2025.140789","DOIUrl":null,"url":null,"abstract":"<div><div>GdFe₀.₅Cr₀.₅O₃ (GFCO) is a single-phase magnetoelectric multiferroic at temperatures close to ambient. Epitaxial thin films of this orthorhombic perovskite would offer the possibility of tuning its electrical and magnetic properties through control of strain and interface effects. Here, 200 nm thick GFCO thin films have been grown on (001) SrTiO<sub>3</sub> substrates by solution synthesis and the microstructures have been investigated by cross-sectional transmission electron microscopy. The GFCO films are epitaxial but exhibit a mixture of three different orientation relationships in the form of domains ≈50 nm in diameter. Geometric analyses of the lattice matching show that the misfits for these domains would be tensile with magnitudes of less than 2 %. Pockets of a SrCrO<sub>4</sub> reaction product form at the film/substrate interface and do not exhibit any simple orientation with the adjacent phases. The product morphology indicates that the outward diffusion of Sr is more rapid than the inward diffusion of Cr, and this is related to the microstructures of the surrounding phases. These data show that epitaxial films of GFCO can be obtained via this route, but careful control of process parameters would be required to produce single-domain films, and alternate substrates or buffer layers would be needed to inhibit SrCrO<sub>4</sub> formation.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"827 ","pages":"Article 140789"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025001889","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
GdFe₀.₅Cr₀.₅O₃ (GFCO) is a single-phase magnetoelectric multiferroic at temperatures close to ambient. Epitaxial thin films of this orthorhombic perovskite would offer the possibility of tuning its electrical and magnetic properties through control of strain and interface effects. Here, 200 nm thick GFCO thin films have been grown on (001) SrTiO3 substrates by solution synthesis and the microstructures have been investigated by cross-sectional transmission electron microscopy. The GFCO films are epitaxial but exhibit a mixture of three different orientation relationships in the form of domains ≈50 nm in diameter. Geometric analyses of the lattice matching show that the misfits for these domains would be tensile with magnitudes of less than 2 %. Pockets of a SrCrO4 reaction product form at the film/substrate interface and do not exhibit any simple orientation with the adjacent phases. The product morphology indicates that the outward diffusion of Sr is more rapid than the inward diffusion of Cr, and this is related to the microstructures of the surrounding phases. These data show that epitaxial films of GFCO can be obtained via this route, but careful control of process parameters would be required to produce single-domain films, and alternate substrates or buffer layers would be needed to inhibit SrCrO4 formation.
期刊介绍:
Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.