Almost commuting self-adjoint operators and iterated commutator estimates

IF 1.1 3区 数学 Q1 MATHEMATICS
Jakob Geisler
{"title":"Almost commuting self-adjoint operators and iterated commutator estimates","authors":"Jakob Geisler","doi":"10.1016/j.laa.2025.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>Given two almost commuting self-adjoint operators, a new method for finding exactly commuting operators is presented. For this, a differential equation for self-adjoint Hilbert-Schmidt operators is introduced. Quantitative results are proven that the exactly commuting operators are close to the old ones in the Hilbert-Schmidt norm. The proof relies on a novel estimate in which the norm of the commutator is bounded from above by the norm of the iterated commutators times a constant. This inequality is proven in finite dimensions and lower bounds for the optimal constants are given.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"727 ","pages":"Pages 388-411"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003702","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given two almost commuting self-adjoint operators, a new method for finding exactly commuting operators is presented. For this, a differential equation for self-adjoint Hilbert-Schmidt operators is introduced. Quantitative results are proven that the exactly commuting operators are close to the old ones in the Hilbert-Schmidt norm. The proof relies on a novel estimate in which the norm of the commutator is bounded from above by the norm of the iterated commutators times a constant. This inequality is proven in finite dimensions and lower bounds for the optimal constants are given.
几乎可交换自伴随算子和迭代换向子估计
给定两个几乎可交换的自伴随算子,给出了一种求精确可交换算子的新方法。为此,引入了自伴随Hilbert-Schmidt算子的微分方程。定量结果证明,在Hilbert-Schmidt范数中,精确交换算子接近旧算子。这个证明依赖于一个新的估计,其中对易子的范数由上面迭代对易子的范数乘以一个常数限定。在有限维上证明了这个不等式,并给出了最优常数的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信