Predictive Modeling of Heart Failure Risk Based on Dietary Antioxidants: A Machine Learning Approach.

IF 4.2 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Hechao Zhao,Guanguo Shen,Wenjie Zhang,Yangyi Zhang,Xiaochi Wang,Xiaoying Chen,Yali Chen,Linyi Ye,Jingtao Liu,Jing Jiang,Yanhua Wang
{"title":"Predictive Modeling of Heart Failure Risk Based on Dietary Antioxidants: A Machine Learning Approach.","authors":"Hechao Zhao,Guanguo Shen,Wenjie Zhang,Yangyi Zhang,Xiaochi Wang,Xiaoying Chen,Yali Chen,Linyi Ye,Jingtao Liu,Jing Jiang,Yanhua Wang","doi":"10.1002/mnfr.70249","DOIUrl":null,"url":null,"abstract":"This study investigates the relationship between dietary antioxidants and heart failure (HF) risk using nationally representative National Health and Nutrition Examination Survey data (2005-2018). It aims to identify key dietary antioxidants and develop a machine-learning-based predictive model for HF. Among 9279 participants (434 HF cases), 44 dietary antioxidant variables were extracted from two 24-h dietary recalls. Variance inflation factor filtering, SMOTE balancing, and Boruta selection were applied. Six machine learning models-random forest, LightGBM, K-nearest neighbors (KNN), Naive Bayes, support vector machine (SVM), and Xtreme Gradient Boosting (XGBoost)-were trained with and without demographic/lifestyle covariates. WQS and Qg-comp regressions quantified joint antioxidant effects. XGBoost achieved the highest accuracy (0.965 adjusted, 0.963 unadjusted), F1 score (0.971), and PR-AUC (0.993). WQS showed a 20% lower HF odds per quartile increase in overall antioxidant intake (odds ratio [OR] = 0.80, 95% CI: 0.68-0.93). SHAP analysis of the XGBoost model ranked theobromine, lycopene, caffeine, calcium, vitamin B12, vitamin C, and vitamin B1 as top contributors. Higher intake of specific dietary antioxidants-particularly vitamin B6, folate, and lycopene-is significantly associated with reduced HF risk. The XGBoost model provides a robust, interpretable tool for individual-level HF prediction based on dietary antioxidant profiles, supporting evidence-based dietary strategies for HF prevention.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"53 1","pages":"e70249"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.70249","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the relationship between dietary antioxidants and heart failure (HF) risk using nationally representative National Health and Nutrition Examination Survey data (2005-2018). It aims to identify key dietary antioxidants and develop a machine-learning-based predictive model for HF. Among 9279 participants (434 HF cases), 44 dietary antioxidant variables were extracted from two 24-h dietary recalls. Variance inflation factor filtering, SMOTE balancing, and Boruta selection were applied. Six machine learning models-random forest, LightGBM, K-nearest neighbors (KNN), Naive Bayes, support vector machine (SVM), and Xtreme Gradient Boosting (XGBoost)-were trained with and without demographic/lifestyle covariates. WQS and Qg-comp regressions quantified joint antioxidant effects. XGBoost achieved the highest accuracy (0.965 adjusted, 0.963 unadjusted), F1 score (0.971), and PR-AUC (0.993). WQS showed a 20% lower HF odds per quartile increase in overall antioxidant intake (odds ratio [OR] = 0.80, 95% CI: 0.68-0.93). SHAP analysis of the XGBoost model ranked theobromine, lycopene, caffeine, calcium, vitamin B12, vitamin C, and vitamin B1 as top contributors. Higher intake of specific dietary antioxidants-particularly vitamin B6, folate, and lycopene-is significantly associated with reduced HF risk. The XGBoost model provides a robust, interpretable tool for individual-level HF prediction based on dietary antioxidant profiles, supporting evidence-based dietary strategies for HF prevention.
基于膳食抗氧化剂的心力衰竭风险预测建模:一种机器学习方法。
本研究利用2005-2018年具有全国代表性的国家健康与营养调查数据,调查了膳食抗氧化剂与心力衰竭(HF)风险之间的关系。它旨在确定关键的膳食抗氧化剂,并开发基于机器学习的心衰预测模型。在9279名参与者(434例HF病例)中,从两次24小时饮食回顾中提取了44个膳食抗氧化变量。采用方差膨胀因子滤波、SMOTE平衡和Boruta选择。随机森林、LightGBM、k近邻(KNN)、朴素贝叶斯(Naive Bayes)、支持向量机(SVM)和Xtreme Gradient Boosting (XGBoost)这六个机器学习模型在有或没有人口统计/生活方式协变量的情况下进行了训练。WQS和Qg-comp回归量化了联合抗氧化作用。XGBoost的准确率最高(调整后为0.965,未调整时为0.963),F1评分为0.971,PR-AUC为0.993。WQS显示,总抗氧化剂摄入量每增加四分位数,HF几率降低20%(优势比[OR] = 0.80, 95% CI: 0.68-0.93)。XGBoost模型的SHAP分析将可可碱、番茄红素、咖啡因、钙、维生素B12、维生素C和维生素B1列为主要贡献者。高摄入特定膳食抗氧化剂——尤其是维生素B6、叶酸和番茄红素——与降低心衰风险显著相关。XGBoost模型为基于膳食抗氧化剂谱的个人水平HF预测提供了一个强大的、可解释的工具,支持以证据为基础的HF预防饮食策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Nutrition & Food Research
Molecular Nutrition & Food Research 工程技术-食品科技
CiteScore
8.70
自引率
1.90%
发文量
250
审稿时长
1.7 months
期刊介绍: Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines: Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics. Immunology: Understanding the interactions of food and the immune system. Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes. Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信