{"title":"Low Temperature HfO₂ Interface Engineering in Dual-Gate and Gate-All-Around MoS₂ Transistors","authors":"Po-Heng Pao;Cheng-Yi Lin;Heng-Tung Hsu;Chao-Hsin Chien","doi":"10.1109/JEDS.2025.3600006","DOIUrl":null,"url":null,"abstract":"This paper introduces the deposition of seed layers using a soaking technique to deposit dielectric layers on transition metal dichalcogenides (TMDs). This method addresses the bottleneck caused by the lack of dangling bonds in two-dimensional materials, which hinders the adsorption of precursors during the ALD process. We utilize the Hafnium soak technique, which can facilitate depositing a gate dielectric onto TMDs exhibiting smooth film characteristics and outstanding physical properties. We fabricate dual-gate devices using TMDs with an equivalent oxide thickness (EOT) of 1 nm and a subthreshold swing (S.S.) of 94 mV/dec. Additionally, the soaking technique promotes growth on both the top and back sides of two-dimensional materials, facilitating the development of gate-all-around (GAA) field-effect transistors.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"1006-1009"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11129037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11129037/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces the deposition of seed layers using a soaking technique to deposit dielectric layers on transition metal dichalcogenides (TMDs). This method addresses the bottleneck caused by the lack of dangling bonds in two-dimensional materials, which hinders the adsorption of precursors during the ALD process. We utilize the Hafnium soak technique, which can facilitate depositing a gate dielectric onto TMDs exhibiting smooth film characteristics and outstanding physical properties. We fabricate dual-gate devices using TMDs with an equivalent oxide thickness (EOT) of 1 nm and a subthreshold swing (S.S.) of 94 mV/dec. Additionally, the soaking technique promotes growth on both the top and back sides of two-dimensional materials, facilitating the development of gate-all-around (GAA) field-effect transistors.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.