Paulo Brito-Pereira , Kenneth Bruninx , Laurens de Vries , Paolo Mastropietro , Pablo Rodilla
{"title":"Future-proofed resource adequacy metrics: A model-based assessment of multi-metric vs. composite-metric reliability standards","authors":"Paulo Brito-Pereira , Kenneth Bruninx , Laurens de Vries , Paolo Mastropietro , Pablo Rodilla","doi":"10.1016/j.segan.2025.101957","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid decarbonisation of the power sector is challenging the traditional resource adequacy framework. Variable and energy-limited resources are driving the emergence of new correlations that, together with extreme weather events, are rapidly changing the expected scarcity conditions in the electricity system. Traditional resource adequacy metrics are showing their limitations under these new conditions, and many regulators have already started to reform them. This article presents the first model-based comparative analysis of two different approaches that have been proposed to overcome these limitations, i.e., multi-metric standards (imposing a set of different resource adequacy constraints) and composite-metric standards (combining different resource adequacy metrics through weighting factors to build a single reliability standard). These two approaches are quantitatively evaluated in this article through case studies obtained from a simulation model, focusing not only on the impact of the reliability standard on the resource mix, but also on the design of the reliability product to be traded in a capacity mechanism to guide the system towards that mix.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"44 ","pages":"Article 101957"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235246772500339X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid decarbonisation of the power sector is challenging the traditional resource adequacy framework. Variable and energy-limited resources are driving the emergence of new correlations that, together with extreme weather events, are rapidly changing the expected scarcity conditions in the electricity system. Traditional resource adequacy metrics are showing their limitations under these new conditions, and many regulators have already started to reform them. This article presents the first model-based comparative analysis of two different approaches that have been proposed to overcome these limitations, i.e., multi-metric standards (imposing a set of different resource adequacy constraints) and composite-metric standards (combining different resource adequacy metrics through weighting factors to build a single reliability standard). These two approaches are quantitatively evaluated in this article through case studies obtained from a simulation model, focusing not only on the impact of the reliability standard on the resource mix, but also on the design of the reliability product to be traded in a capacity mechanism to guide the system towards that mix.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.