Cole S. Hudson , James E. Smith , Rongjin Sun , Linh T. Vuong , Luan D. Truong , David Sheikh-Hamad , Masayuki Nigo , Ming Hu , Vincent H. Tam
{"title":"Exploration of zileuton protective mechanisms against vancomycin-associated nephrotoxicity","authors":"Cole S. Hudson , James E. Smith , Rongjin Sun , Linh T. Vuong , Luan D. Truong , David Sheikh-Hamad , Masayuki Nigo , Ming Hu , Vincent H. Tam","doi":"10.1016/j.taap.2025.117543","DOIUrl":null,"url":null,"abstract":"<div><div>Vancomycin is one of the most commonly used parenteral antibiotics for treating drug-resistant bacterial infections, however, it is hindered by nephrotoxicity. We previously demonstrated that zileuton could delay the onset of vancomycin-associated nephrotoxicity in rats. Here, we sought to understand the mechanism(s) of zileuton renal protection. Sprague-Dawley rats were administered vancomycin (200 mg/kg) and zileuton (1 and 4 mg/kg) daily for 10 days. After 3 days, kidneys were collected from select animals for histopathological analysis of renal injury. Single-dose vancomycin serum pharmacokinetics and renal tissue spatial distribution with adjuvant zileuton were evaluated. <em>In vitro,</em> proximal tubular cells were exposed to vancomycin and zileuton; cell viability, vancomycin accumulation, ROS levels, and p62/KEAP1 and ferroptosis-related protein levels were measured. Vancomycin was associated with increased serum creatinine and proximal tubule injury in rats including tubular cell necrosis, cytoplasmic vacuolization, interstitial edema, and mononuclear inflammatory cell infiltration. Adjuvant zileuton reduced renal injury and serum creatinine elevation without altering vancomycin serum pharmacokinetics or renal tissue distribution. <em>In vitro</em>, vancomycin exposure resulted in cellular injury, increased ROS, and significantly decreased HO-1 levels. Concomitant zileuton reduced cellular injury, decreased ROS, and rescued HO-1 levels. These preliminary findings indicate that zileuton may be protective against vancomycin-associated renal injury potentially by rescuing HO-1 levels and reducing oxidative stress in proximal tubular cells. Attenuation of nephrotoxicity would allow the optimal clinical use of vancomycin to treat drug-resistant bacterial infections, which could reduce patient harm and hospitalization costs.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"505 ","pages":"Article 117543"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25003199","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Vancomycin is one of the most commonly used parenteral antibiotics for treating drug-resistant bacterial infections, however, it is hindered by nephrotoxicity. We previously demonstrated that zileuton could delay the onset of vancomycin-associated nephrotoxicity in rats. Here, we sought to understand the mechanism(s) of zileuton renal protection. Sprague-Dawley rats were administered vancomycin (200 mg/kg) and zileuton (1 and 4 mg/kg) daily for 10 days. After 3 days, kidneys were collected from select animals for histopathological analysis of renal injury. Single-dose vancomycin serum pharmacokinetics and renal tissue spatial distribution with adjuvant zileuton were evaluated. In vitro, proximal tubular cells were exposed to vancomycin and zileuton; cell viability, vancomycin accumulation, ROS levels, and p62/KEAP1 and ferroptosis-related protein levels were measured. Vancomycin was associated with increased serum creatinine and proximal tubule injury in rats including tubular cell necrosis, cytoplasmic vacuolization, interstitial edema, and mononuclear inflammatory cell infiltration. Adjuvant zileuton reduced renal injury and serum creatinine elevation without altering vancomycin serum pharmacokinetics or renal tissue distribution. In vitro, vancomycin exposure resulted in cellular injury, increased ROS, and significantly decreased HO-1 levels. Concomitant zileuton reduced cellular injury, decreased ROS, and rescued HO-1 levels. These preliminary findings indicate that zileuton may be protective against vancomycin-associated renal injury potentially by rescuing HO-1 levels and reducing oxidative stress in proximal tubular cells. Attenuation of nephrotoxicity would allow the optimal clinical use of vancomycin to treat drug-resistant bacterial infections, which could reduce patient harm and hospitalization costs.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.