Automated EEG signal processing: A comprehensive investigation into preprocessing techniques and sub-band extraction for enhanced brain-computer interface applications

IF 2.3 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Venkata Phanikrishna Balam
{"title":"Automated EEG signal processing: A comprehensive investigation into preprocessing techniques and sub-band extraction for enhanced brain-computer interface applications","authors":"Venkata Phanikrishna Balam","doi":"10.1016/j.jneumeth.2025.110561","DOIUrl":null,"url":null,"abstract":"<div><div>The Electroencephalogram (EEG) is a vital physiological signal for monitoring brain activity and understanding neurological capacities, disabilities, and cognitive processes. Analyzing and classifying EEG signals are key to assessing an individual’s reactions to various stimuli. Manual EEG analysis is time-consuming and labor-intensive, necessitating automated tools for efficiency. Machine learning techniques often rely on preprocessing and segmentation methods to integrate automated classification into EEG signal processing, with EEG sub-band components (<em>δ</em>,<em>θ</em>,<em>α</em>,<em>β</em> and <em>γ</em>) playing a crucial role. This paper presents a comprehensive exploration of EEG preprocessing methods, with a specific focus on sub-band extraction techniques used in Brain-Computer Interface (BCI) applications. Various methods—including Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, and wavelet transforms (DWT, WPT)—are evaluated through qualitative and quantitative parametric analysis, along with a review of their practical applicability. The study also includes an application-based evaluation using an open-access EEG dataset for drowsiness detection.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"424 ","pages":"Article 110561"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025002055","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The Electroencephalogram (EEG) is a vital physiological signal for monitoring brain activity and understanding neurological capacities, disabilities, and cognitive processes. Analyzing and classifying EEG signals are key to assessing an individual’s reactions to various stimuli. Manual EEG analysis is time-consuming and labor-intensive, necessitating automated tools for efficiency. Machine learning techniques often rely on preprocessing and segmentation methods to integrate automated classification into EEG signal processing, with EEG sub-band components (δ,θ,α,β and γ) playing a crucial role. This paper presents a comprehensive exploration of EEG preprocessing methods, with a specific focus on sub-band extraction techniques used in Brain-Computer Interface (BCI) applications. Various methods—including Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, and wavelet transforms (DWT, WPT)—are evaluated through qualitative and quantitative parametric analysis, along with a review of their practical applicability. The study also includes an application-based evaluation using an open-access EEG dataset for drowsiness detection.
脑电信号自动处理:增强脑机接口应用的预处理技术和子带提取综合研究。
脑电图(EEG)是监测大脑活动和了解神经功能、残疾和认知过程的重要生理信号。分析和分类脑电图信号是评估个体对各种刺激反应的关键。手动脑电图分析是费时费力的,需要自动化工具来提高效率。机器学习技术通常依靠预处理和分割方法将自动分类集成到脑电信号处理中,其中脑电信号子带分量(δ, θ, α, β和γ)起着至关重要的作用。本文对脑电预处理方法进行了全面的探讨,特别关注了脑机接口(BCI)应用中使用的子带提取技术。各种方法-包括快速傅立叶变换(FFT),短时傅立叶变换(STFT),有限脉冲响应(FIR)和无限脉冲响应(IIR)滤波器,以及小波变换(DWT, WPT)-通过定性和定量参数分析进行评估,以及对其实际适用性的回顾。该研究还包括基于应用程序的评估,使用开放获取的EEG数据集进行困倦检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信