Sperm cell empowerment: X-ray-guided magnetic fields for enhanced actuation and localization of cytocompatible biohybrid microrobots.

npj Robotics Pub Date : 2025-01-01 Epub Date: 2025-09-02 DOI:10.1038/s44182-025-00044-1
Veronika Magdanz, Joep K van der Mijle Meijer, Leendert-Jan W Ligtenberg, Yusra Pervez, Mathilda LaBrash-White, Motahareh Shabani Dargah, Iris Mulder, Sadaf Mohsenkani, Maud Gorbet, Negin Bouzari, Hamed Shahsavan, Lianne Weber, Remco H Liefers, Michiel C Warlé, Islam S M Khalil
{"title":"Sperm cell empowerment: X-ray-guided magnetic fields for enhanced actuation and localization of cytocompatible biohybrid microrobots.","authors":"Veronika Magdanz, Joep K van der Mijle Meijer, Leendert-Jan W Ligtenberg, Yusra Pervez, Mathilda LaBrash-White, Motahareh Shabani Dargah, Iris Mulder, Sadaf Mohsenkani, Maud Gorbet, Negin Bouzari, Hamed Shahsavan, Lianne Weber, Remco H Liefers, Michiel C Warlé, Islam S M Khalil","doi":"10.1038/s44182-025-00044-1","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic microrobots have the potential to revolutionize medicine by navigating pathways to deliver precision-targeted therapy. However, a significant challenge arises. There commonly is a trade-off between magnetic responsiveness, detectability using medical imaging systems and cytotoxicity from increased amounts of magnetic content. Addressing this, we study biohybrid microrobots comprising clusters of iron oxide nanoparticle-coated sperm cells. These sperm-templated microrobots offer benefits over microrobots driven by live sperm, such as longer shelf-life and operation time, full directional and speed control and easy fabrication. To demonstrate their potential for use in clinical settings, we developed an X-ray-guided robotic platform investigating the magnetic response and detectability of these biohybrid clusters across varying nanoparticle concentrations, notably demonstrating simultaneous actuation and localization of sperm for the first time. These improvements advance the research closer to unleashing the potential of biohybrid microrobots for medical applications within the reproductive tract.</p>","PeriodicalId":520370,"journal":{"name":"npj Robotics","volume":"3 1","pages":"28"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44182-025-00044-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic microrobots have the potential to revolutionize medicine by navigating pathways to deliver precision-targeted therapy. However, a significant challenge arises. There commonly is a trade-off between magnetic responsiveness, detectability using medical imaging systems and cytotoxicity from increased amounts of magnetic content. Addressing this, we study biohybrid microrobots comprising clusters of iron oxide nanoparticle-coated sperm cells. These sperm-templated microrobots offer benefits over microrobots driven by live sperm, such as longer shelf-life and operation time, full directional and speed control and easy fabrication. To demonstrate their potential for use in clinical settings, we developed an X-ray-guided robotic platform investigating the magnetic response and detectability of these biohybrid clusters across varying nanoparticle concentrations, notably demonstrating simultaneous actuation and localization of sperm for the first time. These improvements advance the research closer to unleashing the potential of biohybrid microrobots for medical applications within the reproductive tract.

精子细胞授权:x射线引导磁场增强驱动和定位细胞兼容的生物杂交微型机器人。
磁性微型机器人有可能通过导航路径来提供精确靶向治疗,从而彻底改变医学。然而,一个重大的挑战出现了。通常在磁响应性、医学成像系统的可探测性和磁性含量增加的细胞毒性之间存在权衡。为了解决这个问题,我们研究了由氧化铁纳米颗粒包裹的精子细胞组成的生物混合微型机器人。与由活精子驱动的微型机器人相比,这些精子模板微型机器人具有更长的保质期和操作时间,全方向和速度控制以及易于制造等优点。为了证明它们在临床环境中的应用潜力,我们开发了一个x射线引导的机器人平台,研究这些生物杂交团簇在不同纳米颗粒浓度下的磁响应和可探测性,特别是首次展示了精子的同时驱动和定位。这些改进使研究更接近于释放生物混合微型机器人在生殖道内医疗应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信