Mohiuddin Amirul Kabir Chowdhury, Ankon Lahiry, Md. Lifat Rahi, Md. Amzad Hossain, Gustavo de Aguiar, Graziela Alves, Aung Tun Aye, Rajib Dutta, Melina Aparecida Bonato, Albert G. J. Tacon
{"title":"Dietary Hydrolyzed Yeast Improves Growth, Gut Health, and Selective Gene Expression of Nile Tilapia (Oreochromis niloticus)","authors":"Mohiuddin Amirul Kabir Chowdhury, Ankon Lahiry, Md. Lifat Rahi, Md. Amzad Hossain, Gustavo de Aguiar, Graziela Alves, Aung Tun Aye, Rajib Dutta, Melina Aparecida Bonato, Albert G. J. Tacon","doi":"10.1155/anu/7934851","DOIUrl":null,"url":null,"abstract":"<p>The effects of graded levels of hydrolyzed yeast (HY) supplementation (0.0, 0.5, 1.0, and 2.0 g/kg, i.e., Control, HY0.5, HY1.0, HY2.0, respectively) on growth performance, gut health, and immune responses of juvenile Nile tilapia (<i>Oreochromis niloticus</i>) were assessed in this study. The experiment was conducted in a completely randomized design for 14 weeks, where the treatments were distributed in 16 300-L tanks with four replicates each. Despite no significant differences, the final body weight and weight gain were numerically higher in treatments containing HY (44.7 and 34.7 g, 43.5 and 33.5 g, and 45.5 and 35.5 g in HY0.5, HY1.0, and HY2.0, respectively). Feed efficiency (FE) was improved linearly (<i>p</i> < 0.05) with increasing dietary HY level (0.65, 0.70, and 0.72, respectively). Similarly, there was also a significant linear relationship between protein deposition (PD), as well as protein and energy retention efficiency (ERE), with the increasing dietary HY level. Among the blood parameters, only the hematocrit (HCT) value was significantly lower in HY1.0 and HY2.0 compared to the control and HY0.5 treatments. Gut histology showed significantly higher villi length in fish fed HY2.0 diets (795 ± 89.6 µm) compared to those fed the control diet (504 ± 80.7 µm). The average surface volume (SV) of the villi was also higher in tilapia fed HY0.5, HY1.0, and HY2.0 diets (0.025, 0.026, and 0.038 mm<sup>3</sup>, respectively) compared to the control diet (0.021 mm<sup>3</sup>). All four target genes were significantly upregulated in HY1.0 and HY2.0 treatments. The expression of the genes supporting growth and ATP production, insulin-like growth factor-1 (IGF-1) and glyceraldehyde-3-phosphate (G-3-P), respectively, was significantly improved, as well as the expression of the immune-related gene, hepcidin. The expression of ghrelin also showed a significant increase with increasing HY levels. It can be concluded that the HY supplementation improved feed utilization, gut health, nutrient absorption capacity, and immunity in Nile tilapia.</p>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/7934851","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/7934851","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of graded levels of hydrolyzed yeast (HY) supplementation (0.0, 0.5, 1.0, and 2.0 g/kg, i.e., Control, HY0.5, HY1.0, HY2.0, respectively) on growth performance, gut health, and immune responses of juvenile Nile tilapia (Oreochromis niloticus) were assessed in this study. The experiment was conducted in a completely randomized design for 14 weeks, where the treatments were distributed in 16 300-L tanks with four replicates each. Despite no significant differences, the final body weight and weight gain were numerically higher in treatments containing HY (44.7 and 34.7 g, 43.5 and 33.5 g, and 45.5 and 35.5 g in HY0.5, HY1.0, and HY2.0, respectively). Feed efficiency (FE) was improved linearly (p < 0.05) with increasing dietary HY level (0.65, 0.70, and 0.72, respectively). Similarly, there was also a significant linear relationship between protein deposition (PD), as well as protein and energy retention efficiency (ERE), with the increasing dietary HY level. Among the blood parameters, only the hematocrit (HCT) value was significantly lower in HY1.0 and HY2.0 compared to the control and HY0.5 treatments. Gut histology showed significantly higher villi length in fish fed HY2.0 diets (795 ± 89.6 µm) compared to those fed the control diet (504 ± 80.7 µm). The average surface volume (SV) of the villi was also higher in tilapia fed HY0.5, HY1.0, and HY2.0 diets (0.025, 0.026, and 0.038 mm3, respectively) compared to the control diet (0.021 mm3). All four target genes were significantly upregulated in HY1.0 and HY2.0 treatments. The expression of the genes supporting growth and ATP production, insulin-like growth factor-1 (IGF-1) and glyceraldehyde-3-phosphate (G-3-P), respectively, was significantly improved, as well as the expression of the immune-related gene, hepcidin. The expression of ghrelin also showed a significant increase with increasing HY levels. It can be concluded that the HY supplementation improved feed utilization, gut health, nutrient absorption capacity, and immunity in Nile tilapia.
期刊介绍:
Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers.
Aquaculture Nutrition publishes papers which strive to:
increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research.
improve understanding of the relationships between nutrition and the environmental impact of aquaculture.
increase understanding of the relationships between nutrition and processing, product quality, and the consumer.
help aquaculturalists improve their management and understanding of the complex discipline of nutrition.
help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.