{"title":"Reliable-RPL: A Reliability-Aware RPL Protocol Using Trust-Based Blockchain System for Internet of Things","authors":"Aswani Devi Aguru;Amrit Pandey;Suresh Babu Erukala;Ali Kashif Bashir;Yaodong Zhu;Rajesh Kaluri;Thippa Reddy Gadekallu","doi":"10.1109/TR.2024.3508652","DOIUrl":null,"url":null,"abstract":"Routing protocol for low-power and lossy network (RPL) is a routing protocol for resource-constrained Internet of Things (IoT) network devices. RPL has become a widely adopted protocol for routing in low-powered device networks. However, it lacks essential security features, including end-to-end security, robust authentication, and intrusion detection capabilities. Blockchain is a decentralized and immutable digital ledger that records transactions across multiple computers. It provides privacy, transparency, security, and trust. In this work, we proposed a blockchain-based reliable RPL protocol called reliable-RPL, which uses node reliability, link reliability, and relative trust scores of RPL-enabled IoT devices. The parent selection and network topology formulation are based on the proposed reliability-aware objective function. A lightweight ECC-based scheme performs registration, identification, and authentication of RPL-enabled IoT devices. The consistent topological updates from these authenticated IoT devices are used to secure routing paths in RPL-enabled networks. Using a modified trickle algorithm, we employed a reputation-based trust system that monitors and labels malicious nodes based on their reliable activities. The novelty of the proposed framework relies on integrating Contiki-NG (as fronted for IoT network simulation) and Hyperledger Fabric (as a backend for blockchain-based device authentication and trust-based attack resilience regarding rank, replay, sinkhole, and route poisoning attacks). The experimental evaluation of reliable-RPL has demonstrated its effectiveness compared to state-of-the-art methods regarding significant performance metrics, including packet loss, routing overhead, and throughput on Hyperledger Caliper.","PeriodicalId":56305,"journal":{"name":"IEEE Transactions on Reliability","volume":"74 3","pages":"3499-3513"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Reliability","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10803094/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Routing protocol for low-power and lossy network (RPL) is a routing protocol for resource-constrained Internet of Things (IoT) network devices. RPL has become a widely adopted protocol for routing in low-powered device networks. However, it lacks essential security features, including end-to-end security, robust authentication, and intrusion detection capabilities. Blockchain is a decentralized and immutable digital ledger that records transactions across multiple computers. It provides privacy, transparency, security, and trust. In this work, we proposed a blockchain-based reliable RPL protocol called reliable-RPL, which uses node reliability, link reliability, and relative trust scores of RPL-enabled IoT devices. The parent selection and network topology formulation are based on the proposed reliability-aware objective function. A lightweight ECC-based scheme performs registration, identification, and authentication of RPL-enabled IoT devices. The consistent topological updates from these authenticated IoT devices are used to secure routing paths in RPL-enabled networks. Using a modified trickle algorithm, we employed a reputation-based trust system that monitors and labels malicious nodes based on their reliable activities. The novelty of the proposed framework relies on integrating Contiki-NG (as fronted for IoT network simulation) and Hyperledger Fabric (as a backend for blockchain-based device authentication and trust-based attack resilience regarding rank, replay, sinkhole, and route poisoning attacks). The experimental evaluation of reliable-RPL has demonstrated its effectiveness compared to state-of-the-art methods regarding significant performance metrics, including packet loss, routing overhead, and throughput on Hyperledger Caliper.
期刊介绍:
IEEE Transactions on Reliability is a refereed journal for the reliability and allied disciplines including, but not limited to, maintainability, physics of failure, life testing, prognostics, design and manufacture for reliability, reliability for systems of systems, network availability, mission success, warranty, safety, and various measures of effectiveness. Topics eligible for publication range from hardware to software, from materials to systems, from consumer and industrial devices to manufacturing plants, from individual items to networks, from techniques for making things better to ways of predicting and measuring behavior in the field. As an engineering subject that supports new and existing technologies, we constantly expand into new areas of the assurance sciences.