Reconfigurable Orbital Angular Momentum Mode Generation at 225 GHz Using Cascaded Reflectionless Miniaturized-Element Frequency Selective Surface Phase Plates

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ehsan Hafezi;Kamal Sarabandi
{"title":"Reconfigurable Orbital Angular Momentum Mode Generation at 225 GHz Using Cascaded Reflectionless Miniaturized-Element Frequency Selective Surface Phase Plates","authors":"Ehsan Hafezi;Kamal Sarabandi","doi":"10.1109/TTHZ.2025.3580257","DOIUrl":null,"url":null,"abstract":"This article presents a device capable of generating different or hybrid orbital angular momentum (OAM) modes at 225 GHz using a mechanically tunable configuration. The device is composed of two 10 cm-diameter reflectionless plates, each 0.6 mm thick, designed to work together such that their combined phase response produces specific OAM modes, once properly aligned. These plates are patterned with metallic traces on thin glass substrates to form a miniaturized-element frequency selective surface structure. These traces are microfabricated with high precision to achieve accurate transmission phase modulation across the wafer. The mechanism enabling mode flexibility relies on discretizing the plates into finite number of angular sectors, each with a unique phase response. When the plates are properly aligned, the combined phase from corresponding sectors can generate a desired OAM mode. By rotating one plate relative to the other, new alignments between sectors produce different combined phase profiles, allowing for the generation of a different mode. The reflectionless nature of the plates ensures that the overall performance is largely insensitive to the distance between the two plates. Transmission phase measurements of individual and combined plates are validated via near-field measurement and the resulting phase profiles confirmed the generation of distinct OAM modes in agreement with simulation predictions. This device demonstrates an innovative approach to OAM mode generation, with potential applications in near-field communication and high-resolution radar imaging systems.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"15 5","pages":"821-830"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11037485/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a device capable of generating different or hybrid orbital angular momentum (OAM) modes at 225 GHz using a mechanically tunable configuration. The device is composed of two 10 cm-diameter reflectionless plates, each 0.6 mm thick, designed to work together such that their combined phase response produces specific OAM modes, once properly aligned. These plates are patterned with metallic traces on thin glass substrates to form a miniaturized-element frequency selective surface structure. These traces are microfabricated with high precision to achieve accurate transmission phase modulation across the wafer. The mechanism enabling mode flexibility relies on discretizing the plates into finite number of angular sectors, each with a unique phase response. When the plates are properly aligned, the combined phase from corresponding sectors can generate a desired OAM mode. By rotating one plate relative to the other, new alignments between sectors produce different combined phase profiles, allowing for the generation of a different mode. The reflectionless nature of the plates ensures that the overall performance is largely insensitive to the distance between the two plates. Transmission phase measurements of individual and combined plates are validated via near-field measurement and the resulting phase profiles confirmed the generation of distinct OAM modes in agreement with simulation predictions. This device demonstrates an innovative approach to OAM mode generation, with potential applications in near-field communication and high-resolution radar imaging systems.
基于级联无反射微型元件频率选择表面相片的225 GHz可重构轨道角动量模式生成
本文介绍了一种能够在225 GHz使用机械可调配置产生不同或混合轨道角动量(OAM)模式的设备。该装置由两个直径为10厘米的无反射板组成,每个板厚0.6毫米,设计用于一起工作,这样它们的组合相位响应就会产生特定的OAM模式,一旦正确对齐。这些板在薄玻璃基板上带有金属痕迹,形成小型化元件频率选择表面结构。这些走线采用高精度微加工,以实现晶圆上精确的传输相位调制。实现模式灵活性的机制依赖于将板离散成有限数量的角扇区,每个扇区具有唯一的相位响应。当极板正确排列时,来自相应扇区的组合相位可以产生所需的OAM模式。通过旋转一个板相对于另一个,扇区之间的新对齐产生不同的组合相位轮廓,允许产生不同的模式。平板的无反射特性保证了整体性能在很大程度上对两个平板之间的距离不敏感。通过近场测量验证了单个和组合板的传输相位测量,所得相位曲线证实了不同OAM模式的产生与模拟预测一致。该设备展示了一种创新的OAM模式生成方法,在近场通信和高分辨率雷达成像系统中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Terahertz Science and Technology
IEEE Transactions on Terahertz Science and Technology ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
7.10
自引率
9.40%
发文量
102
期刊介绍: IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信