Robust Unclad Terahertz Waveguides and Integrated Components Enabled by Multimode Effects and Matched Slot Couplers

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Daniel Headland;Guillermo Carpintero
{"title":"Robust Unclad Terahertz Waveguides and Integrated Components Enabled by Multimode Effects and Matched Slot Couplers","authors":"Daniel Headland;Guillermo Carpintero","doi":"10.1109/TTHZ.2025.3583912","DOIUrl":null,"url":null,"abstract":"We address critical physical fragility issues associated with terahertz integrated all-silicon substrateless devices. This is necessary because, although the current state-of-the-art offers excellent electromagnetic performance, real-world deployment is currently held back by structural weaknesses. One such example is the input coupler, which has previously taken the form of an exposed taper that reduces core dimensions over several wavelengths, and is vulnerable to breakage. This is replaced with a compact subwavelength slot-waveguide coupler, which exploits reflection-cancellation as opposed to a progressive transition. The other key structural weakness is the in-plane integrated support that physically suspends the substrateless waveguide's core, and this is addressed with multimode effects that localize a field null to the point of contact with a solid supporting beam. The resultant robust waveguide platform exhibits a working relative bandwidth of <inline-formula><tex-math>$\\sim$</tex-math></inline-formula>31%, which is sufficient for terahertz communications in standard allocated bands. Multimode effects are also exploited to realize an integrated photonic 2 × 2 splitter, which is incidentally the first demonstration of an integrated dielectric multimode interferometer splitter in the terahertz range.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"15 5","pages":"885-893"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11054290","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11054290/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We address critical physical fragility issues associated with terahertz integrated all-silicon substrateless devices. This is necessary because, although the current state-of-the-art offers excellent electromagnetic performance, real-world deployment is currently held back by structural weaknesses. One such example is the input coupler, which has previously taken the form of an exposed taper that reduces core dimensions over several wavelengths, and is vulnerable to breakage. This is replaced with a compact subwavelength slot-waveguide coupler, which exploits reflection-cancellation as opposed to a progressive transition. The other key structural weakness is the in-plane integrated support that physically suspends the substrateless waveguide's core, and this is addressed with multimode effects that localize a field null to the point of contact with a solid supporting beam. The resultant robust waveguide platform exhibits a working relative bandwidth of $\sim$31%, which is sufficient for terahertz communications in standard allocated bands. Multimode effects are also exploited to realize an integrated photonic 2 × 2 splitter, which is incidentally the first demonstration of an integrated dielectric multimode interferometer splitter in the terahertz range.
由多模效应和匹配槽耦合器实现的鲁棒无包层太赫兹波导和集成元件
我们解决了与太赫兹集成全硅无衬底器件相关的关键物理脆弱性问题。这是必要的,因为尽管目前最先进的技术提供了出色的电磁性能,但实际部署目前受到结构弱点的阻碍。输入耦合器就是这样的一个例子,它以前采用了暴露的锥形形式,在几个波长上减小了核心尺寸,并且很容易损坏。它被一个紧凑的亚波长槽波导耦合器所取代,该耦合器利用反射抵消而不是渐进过渡。另一个关键的结构弱点是平面内集成支撑,它在物理上悬浮无基板波导的核心,这是通过多模效应来解决的,该效应将场零定位到与固体支撑光束接触的点。所得到的鲁棒波导平台具有31%的工作相对带宽,足以在标准分配频段中进行太赫兹通信。利用多模效应实现了集成光子2 × 2分频器,这是在太赫兹范围内首次演示了集成介电多模干涉仪分频器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Terahertz Science and Technology
IEEE Transactions on Terahertz Science and Technology ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
7.10
自引率
9.40%
发文量
102
期刊介绍: IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信