{"title":"Integrative rank-based regression for multi-source high-dimensional data with multi-type responses.","authors":"Fuzhi Xu, Shuangge Ma, Qingzhao Zhang","doi":"10.1080/02664763.2025.2452964","DOIUrl":null,"url":null,"abstract":"<p><p>Practical scenarios often present instances where the types of responses are different between multi-source different datasets, reflecting distinct attributes or characteristics. In this paper, an integrative rank-based regression is proposed to facilitate information sharing among varied datasets with multi-type responses. Taking advantage of the rank-based regression, our proposed approach adeptly tackles differences in the magnitude of loss functions. In addition, it can robustly handle outliers and data contamination, and effectively mitigate model misspecification. Extensive numerical simulations demonstrate the superior and competitive performance of the proposed approach in model estimation and variable selection. Analysis of genetic data on HNSC and LUAD yields results with biological explanations and confirms its practical usefulness.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 11","pages":"2011-2030"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2025.2452964","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Practical scenarios often present instances where the types of responses are different between multi-source different datasets, reflecting distinct attributes or characteristics. In this paper, an integrative rank-based regression is proposed to facilitate information sharing among varied datasets with multi-type responses. Taking advantage of the rank-based regression, our proposed approach adeptly tackles differences in the magnitude of loss functions. In addition, it can robustly handle outliers and data contamination, and effectively mitigate model misspecification. Extensive numerical simulations demonstrate the superior and competitive performance of the proposed approach in model estimation and variable selection. Analysis of genetic data on HNSC and LUAD yields results with biological explanations and confirms its practical usefulness.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.