Xiaodi Zhang, Haiqing Liu, Xiao Wu, Longgang Jia, Kundlik Gadhave, Lena Wang, Kevin Zhang, Hanyu Li, Rong Chen, Ramhari Kumbhar, Ning Wang, Chantelle E. Terrillion, Bong Gu Kang, Bin Bai, Minhan Park, Ma. Cristine Faye Denna, Shu Zhang, Wenqiang Zheng, Denghui Ye, Xiaoli Rong, Liu Yang, Lili Niu, Han Seok Ko, Weiyi Peng, Lingtao Jin, Mingyao Ying, Liana S. Rosenthal, David W. Nauen, Alex Pantelyat, Mahima Kaur, Kezia Irene, Liuhua Shi, Rahel Feleke, Sonia García-Ruiz, Mina Ryten, Valina L. Dawson, Francesca Dominici, Rodney J. Weber, Xuan Zhang, Pengfei Liu, Ted M. Dawson, Shizhong Han, Xiaobo Mao
{"title":"Lewy body dementia promotion by air pollutants","authors":"Xiaodi Zhang, Haiqing Liu, Xiao Wu, Longgang Jia, Kundlik Gadhave, Lena Wang, Kevin Zhang, Hanyu Li, Rong Chen, Ramhari Kumbhar, Ning Wang, Chantelle E. Terrillion, Bong Gu Kang, Bin Bai, Minhan Park, Ma. Cristine Faye Denna, Shu Zhang, Wenqiang Zheng, Denghui Ye, Xiaoli Rong, Liu Yang, Lili Niu, Han Seok Ko, Weiyi Peng, Lingtao Jin, Mingyao Ying, Liana S. Rosenthal, David W. Nauen, Alex Pantelyat, Mahima Kaur, Kezia Irene, Liuhua Shi, Rahel Feleke, Sonia García-Ruiz, Mina Ryten, Valina L. Dawson, Francesca Dominici, Rodney J. Weber, Xuan Zhang, Pengfei Liu, Ted M. Dawson, Shizhong Han, Xiaobo Mao","doi":"10.1126/science.adu4132","DOIUrl":null,"url":null,"abstract":"<div >Evidence links air pollution to dementia, yet its role in Lewy body dementia (LBD) remains unclear. In this work, we showed in a cohort of 56.5 million individuals across the United States that fine particulate matter (PM<sub>2.5</sub>) exposure raises LBD risk. Mechanistically, we found that PM<sub>2.5</sub> exposure led to brain atrophy in wild-type mice, an effect not seen in α-synuclein (αSyn)–deficient mice. PM<sub>2.5</sub> exposure generated a highly pathogenic αSyn strain, PM<sub>2.5</sub>–induced preformed fibril (PM-PFF), with enhanced proteinase K resistance and neurotoxicity, resembling αSyn LBD strains. PM<sub>2.5</sub> samples from China, the United States, and Europe consistently induced proteinase-resistant αSyn strains and in vivo pathology. Transcriptomic analyses revealed shared responses between PM<sub>2.5</sub>-exposed mice and LBD patients, underscoring PM<sub>2.5</sub>’s role in LBD and stressing the need for interventions to reduce air pollution and its associated neurological disease burden.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"389 6764","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adu4132","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Evidence links air pollution to dementia, yet its role in Lewy body dementia (LBD) remains unclear. In this work, we showed in a cohort of 56.5 million individuals across the United States that fine particulate matter (PM2.5) exposure raises LBD risk. Mechanistically, we found that PM2.5 exposure led to brain atrophy in wild-type mice, an effect not seen in α-synuclein (αSyn)–deficient mice. PM2.5 exposure generated a highly pathogenic αSyn strain, PM2.5–induced preformed fibril (PM-PFF), with enhanced proteinase K resistance and neurotoxicity, resembling αSyn LBD strains. PM2.5 samples from China, the United States, and Europe consistently induced proteinase-resistant αSyn strains and in vivo pathology. Transcriptomic analyses revealed shared responses between PM2.5-exposed mice and LBD patients, underscoring PM2.5’s role in LBD and stressing the need for interventions to reduce air pollution and its associated neurological disease burden.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.