Ping Jin, Pu Guo, Nengchao Luo, Hui Zhang, Chenwei Ni, Ruotian Chen, Wei Liu, Rengui Li, Jianping Xiao, Guoxiong Wang, Fuxiang Zhang, Paolo Fornasiero, Feng Wang
{"title":"Photochemical H2 dissociation for nearly quantitative CO2 reduction to ethylene","authors":"Ping Jin, Pu Guo, Nengchao Luo, Hui Zhang, Chenwei Ni, Ruotian Chen, Wei Liu, Rengui Li, Jianping Xiao, Guoxiong Wang, Fuxiang Zhang, Paolo Fornasiero, Feng Wang","doi":"10.1126/science.adq3445","DOIUrl":null,"url":null,"abstract":"<div >Producing olefins by carbon dioxide (CO<sub>2</sub>) hydrogenation is a long-standing goal. The usual products are multicarbon mixtures because the critical step of heterolytic hydrogen (H<sub>2</sub>) dissociation at high temperatures complicates selectivity control. In this study, we report that irradiating gold–titanium dioxide at 365 nanometers induces heterolytic H<sub>2</sub> dissociation at ambient temperature. This process likely relies on interfacial electric dipoles from photogenerated electrons and holes situated on the metallic gold nanoparticles and interfacial gold–oxygen–titanium scaffolds. The heterolytic H<sub>2</sub> dissociation is further promoted by light-induced coating of gold nanoparticles with a titanium oxide layer. The resulting nucleophilic hydrogen species reduce CO<sub>2</sub> to ethane in >99% yield under light irradiation in a flow apparatus. Furthermore, cascading with a subsequent photocatalytic ethane dehydrogenation generates ethylene in >99% yield over 1500 hours of irradiation.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"389 6764","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adq3445","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Producing olefins by carbon dioxide (CO2) hydrogenation is a long-standing goal. The usual products are multicarbon mixtures because the critical step of heterolytic hydrogen (H2) dissociation at high temperatures complicates selectivity control. In this study, we report that irradiating gold–titanium dioxide at 365 nanometers induces heterolytic H2 dissociation at ambient temperature. This process likely relies on interfacial electric dipoles from photogenerated electrons and holes situated on the metallic gold nanoparticles and interfacial gold–oxygen–titanium scaffolds. The heterolytic H2 dissociation is further promoted by light-induced coating of gold nanoparticles with a titanium oxide layer. The resulting nucleophilic hydrogen species reduce CO2 to ethane in >99% yield under light irradiation in a flow apparatus. Furthermore, cascading with a subsequent photocatalytic ethane dehydrogenation generates ethylene in >99% yield over 1500 hours of irradiation.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.