Alexandra Brandstaetter , Andrea Gondová , Laurie Devisscher , Denis Rivière , Guillaume Auzias , Yann Leprince , Jessica Dubois
{"title":"Differential microstructural development within sensorimotor cortical regions: A diffusion MRI study in preterm and full-term infants","authors":"Alexandra Brandstaetter , Andrea Gondová , Laurie Devisscher , Denis Rivière , Guillaume Auzias , Yann Leprince , Jessica Dubois","doi":"10.1016/j.dcn.2025.101610","DOIUrl":null,"url":null,"abstract":"<div><div>The sensorimotor system develops early in utero and supports the emergence of body representations critical for perception, action, and interaction with environment. While somatotopic protomaps are already developed in the primary somatosensory and motor cortices in late pregnancy, little is known about the anatomical substrates of this functional specialization. In this study, we aimed to decipher the microstructural properties of these regions in the developing brain. Using advanced diffusion MRI and post-processing tools, we parcellated the pre- and post-central gyri into microstructurally distinct clusters along the lateral-to-medial axis in 25 full-term neonates, confirming the early differentiation within sensorimotor regions. These clusters were further analyzed in 59 preterm infants scanned at term-equivalent age (TEA, PT<sub>TEA</sub>), of which 45 were also scanned near birth (PT<sub>Birth</sub>), and compared with another group of 59 full-term neonates. Applying a multivariate Mahalanobis distance approach, we quantified deviations in preterm cortical microstructure relative to the full-term reference. Preterm infants showed significant region- and position-specific deviations at both ages, though these were smaller at TEA (repeated-measures ANCOVA: PT<sub>Birth</sub>: region effect F=25.48, position effect F=16.06; PT<sub>TEA</sub>: region effect F=14.87, all p < 0.001), consistently with ongoing maturation during the pre-term period. Differences between the pre- and post-central gyri, and along the somatotopic axis, suggested differential vulnerability to prematurity. In particular, compared with somatosensory regions, the motor regions appeared to be at a more advanced stage of maturation close to birth (paired t-test, T = -4.388, p < 0.001) and less vulnerable at TEA (paired t-test, T = -4.169, p < 0.001), suggesting lesser impact of prematurity. An opposite pattern was observed, particularly close to birth, for lateral positions related to mouth representation compared with intermediary (paired t-test: T = 5.933, p < 0.001) and medial (paired t-test: T = 4.712, p < 0.001) positions. These findings support the notion that early sensorimotor cortical specialization is microstructurally emergent during gestation and sensitive to atypical developmental context of preterm birth.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"75 ","pages":"Article 101610"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325001057","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The sensorimotor system develops early in utero and supports the emergence of body representations critical for perception, action, and interaction with environment. While somatotopic protomaps are already developed in the primary somatosensory and motor cortices in late pregnancy, little is known about the anatomical substrates of this functional specialization. In this study, we aimed to decipher the microstructural properties of these regions in the developing brain. Using advanced diffusion MRI and post-processing tools, we parcellated the pre- and post-central gyri into microstructurally distinct clusters along the lateral-to-medial axis in 25 full-term neonates, confirming the early differentiation within sensorimotor regions. These clusters were further analyzed in 59 preterm infants scanned at term-equivalent age (TEA, PTTEA), of which 45 were also scanned near birth (PTBirth), and compared with another group of 59 full-term neonates. Applying a multivariate Mahalanobis distance approach, we quantified deviations in preterm cortical microstructure relative to the full-term reference. Preterm infants showed significant region- and position-specific deviations at both ages, though these were smaller at TEA (repeated-measures ANCOVA: PTBirth: region effect F=25.48, position effect F=16.06; PTTEA: region effect F=14.87, all p < 0.001), consistently with ongoing maturation during the pre-term period. Differences between the pre- and post-central gyri, and along the somatotopic axis, suggested differential vulnerability to prematurity. In particular, compared with somatosensory regions, the motor regions appeared to be at a more advanced stage of maturation close to birth (paired t-test, T = -4.388, p < 0.001) and less vulnerable at TEA (paired t-test, T = -4.169, p < 0.001), suggesting lesser impact of prematurity. An opposite pattern was observed, particularly close to birth, for lateral positions related to mouth representation compared with intermediary (paired t-test: T = 5.933, p < 0.001) and medial (paired t-test: T = 4.712, p < 0.001) positions. These findings support the notion that early sensorimotor cortical specialization is microstructurally emergent during gestation and sensitive to atypical developmental context of preterm birth.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.