{"title":"Tailoring the biomarkers of Alzheimer’s disease using a gut microbiome-centric approach: Preclinical, clinical, and regulatory perspectives","authors":"Siya Sharma , Bushra Bashir , Kaustubh Ajit Kolekar , Anuradha Acharya , Mukta Gupta , Radheshyam Jena , Sukriti Vishwas , Jaskiran Kaur , Gaurav Gupta , Popat S. Kumbhar , Deepshikha Patle , MVNL Chaitanya , Monica Gulati , Sachin Kumar Singh","doi":"10.1016/j.arr.2025.102888","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s disease (AD), a progressive neurodegenerative disorder, poses significant therapeutic challenges due to its complex etiology and limited treatment options. Traditional pharmacotherapies targeting amyloid-β (Aβ) and cholinergic pathways offer modest benefits and are often associated with adverse effects. Emerging evidence implicates gut dysbiosis and the gut–brain axis in the pathogenesis and progression of AD. This review explores the multifactorial pathophysiology of AD and evaluates the therapeutic potential of gut-based interventions such as probiotics, prebiotics, synbiotics, metabiotics, postbiotics, and fecal microbiota transplantation (FMT) in mitigating disease pathology. Emphasis has also been given on role of miRNA released from FMT in management of AD. Preclinical and clinical studies demonstrate that these strategies can restore microbial homeostasis, reduce neuroinflammation, enhance gut barrier integrity, and improve cognitive outcomes. The regulatory aspects with use of probiotics based products and FMT is also highlighted. The modulation of neuroimmune, neuroendocrine, and neural pathways through microbiota-derived metabolites offers a promising avenue for AD management. Despite encouraging findings, further research is needed to address interindividual microbiome variability, delivery challenges, and the requirement for large-scale, randomized trials. Personalized gut-targeted approaches may open new horizons for the prevention and treatment of AD.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"112 ","pages":"Article 102888"},"PeriodicalIF":12.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156816372500234X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, poses significant therapeutic challenges due to its complex etiology and limited treatment options. Traditional pharmacotherapies targeting amyloid-β (Aβ) and cholinergic pathways offer modest benefits and are often associated with adverse effects. Emerging evidence implicates gut dysbiosis and the gut–brain axis in the pathogenesis and progression of AD. This review explores the multifactorial pathophysiology of AD and evaluates the therapeutic potential of gut-based interventions such as probiotics, prebiotics, synbiotics, metabiotics, postbiotics, and fecal microbiota transplantation (FMT) in mitigating disease pathology. Emphasis has also been given on role of miRNA released from FMT in management of AD. Preclinical and clinical studies demonstrate that these strategies can restore microbial homeostasis, reduce neuroinflammation, enhance gut barrier integrity, and improve cognitive outcomes. The regulatory aspects with use of probiotics based products and FMT is also highlighted. The modulation of neuroimmune, neuroendocrine, and neural pathways through microbiota-derived metabolites offers a promising avenue for AD management. Despite encouraging findings, further research is needed to address interindividual microbiome variability, delivery challenges, and the requirement for large-scale, randomized trials. Personalized gut-targeted approaches may open new horizons for the prevention and treatment of AD.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.