Hyo-Joung Kim , Walid Amir , Surajit Chakraborty , Ju-Won Shin , Ki-Young Shin , Hyuk-Min Kwon , Tae-Woo Kim
{"title":"Enhancing carrier transport in AlGaN/GaN HEMTs through structural optimization and transconductance modeling","authors":"Hyo-Joung Kim , Walid Amir , Surajit Chakraborty , Ju-Won Shin , Ki-Young Shin , Hyuk-Min Kwon , Tae-Woo Kim","doi":"10.1016/j.sse.2025.109222","DOIUrl":null,"url":null,"abstract":"<div><div>In GaN-based High-Electron Mobility Transistors (HEMTs), the carrier transport properties of the 2-Dimensional Electron Gas (2DEG), specifically the saturation velocity (<em>υ<sub>sat</sub></em>) and effective mobility (<em>μ<sub>n_eff</sub></em>,), are critical determinants of device performance. To enhance these properties, we conducted structural optimizations, which included reducing the Al mole fraction in the Al<sub>x</sub>Ga<sub>1-x</sub>N barrier and introducing an AlGaN back barrier. Recognizing the limitations of traditional extraction techniques, we employed transconductance modeling to accurately extract effective mobility and saturation velocity values. The implementation of the AlGaN back barrier resulted in an effective mobility enhancement to 748 cm<sup>2</sup>/V·s. Additionally, reducing the Al mole fraction in the Al<sub>x</sub>Ga<sub>1-x</sub>N top barrier led to an effective mobility improvement of 484 cm<sup>2</sup>/V·s. These findings provide valuable insights into the design of epitaxial structures for AlGaN/GaN HEMTs aimed at achieving superior performance in future applications.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109222"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001674","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In GaN-based High-Electron Mobility Transistors (HEMTs), the carrier transport properties of the 2-Dimensional Electron Gas (2DEG), specifically the saturation velocity (υsat) and effective mobility (μn_eff,), are critical determinants of device performance. To enhance these properties, we conducted structural optimizations, which included reducing the Al mole fraction in the AlxGa1-xN barrier and introducing an AlGaN back barrier. Recognizing the limitations of traditional extraction techniques, we employed transconductance modeling to accurately extract effective mobility and saturation velocity values. The implementation of the AlGaN back barrier resulted in an effective mobility enhancement to 748 cm2/V·s. Additionally, reducing the Al mole fraction in the AlxGa1-xN top barrier led to an effective mobility improvement of 484 cm2/V·s. These findings provide valuable insights into the design of epitaxial structures for AlGaN/GaN HEMTs aimed at achieving superior performance in future applications.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.