{"title":"Integrated multi-omics profiling of immune microenvironment and drug resistance signatures for precision prognosis in prostate cancer.","authors":"Chao Li, Longxiang Wu, Bowen Zhong, Yu Gan, Lei Zhou, Shuo Tan, Weibin Hou, Kun Yao, Bingzhi Wang, Zhenyu Ou, Shengwang Zhang, Wei Xiong","doi":"10.20517/cdr.2025.47","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Prostate cancer (PCa) continues to be a significant cause of mortality among men, with treatment resistance often influenced by the complexity of the tumor microenvironment (TME). This study aims to develop an immune-centric prognostic model that correlates TME dynamics, genomic instability, and the heterogeneity of drug resistance in PCa. <b>Methods:</b> Multi-omics data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were integrated, encompassing transcriptomic profiles of 554 TCGA-PRAD samples and 329 external validation samples. Immune cell infiltration was assessed using CIBERSORT and ESTIMATE. Weighted gene co-expression network analysis (WGCNA) was employed to identify immune-related modules. Single-cell RNA sequencing (ScRNA-seq) of 835 PCa cells uncovered subtype-specific resistance patterns. Prognostic models were constructed using least absolute shrinkage and selection operator (LASSO) regression and subsequently validated experimentally in PCa cell lines. <b>Results:</b> Two immune subtypes were identified: high-risk subgroups displayed TP53 mutations, increased tumor mutation burden (TMB), and enriched energy metabolism pathways. ScRNA-seq delineated three PCa cell clusters, with high-risk subtypes being sensitive to bendamustine/dacomitinib and resistant to apalutamide/neratinib. A 10-gene prognostic model (e.g., MUC5B, TREM1) categorized patients into high/low-risk groups with distinct survival outcomes (log-rank <i>P</i> < 0.0001). Validation in external datasets confirmed the robust predictive accuracy (AUC: 0.854-0.889). Experimental assays verified subtype-specific drug responses and dysregulation of key model genes. <b>Discussion:</b> This study establishes a TME-driven prognostic framework that connects immune heterogeneity, genomic instability, and therapeutic resistance in PCa. By pinpointing metabolic dependencies and subtype-specific vulnerabilities, our findings provide actionable strategies to circumvent treatment failure, such as targeting energy metabolism or tailoring therapies based on resistance signatures.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"31"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366425/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症耐药(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/cdr.2025.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Prostate cancer (PCa) continues to be a significant cause of mortality among men, with treatment resistance often influenced by the complexity of the tumor microenvironment (TME). This study aims to develop an immune-centric prognostic model that correlates TME dynamics, genomic instability, and the heterogeneity of drug resistance in PCa. Methods: Multi-omics data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were integrated, encompassing transcriptomic profiles of 554 TCGA-PRAD samples and 329 external validation samples. Immune cell infiltration was assessed using CIBERSORT and ESTIMATE. Weighted gene co-expression network analysis (WGCNA) was employed to identify immune-related modules. Single-cell RNA sequencing (ScRNA-seq) of 835 PCa cells uncovered subtype-specific resistance patterns. Prognostic models were constructed using least absolute shrinkage and selection operator (LASSO) regression and subsequently validated experimentally in PCa cell lines. Results: Two immune subtypes were identified: high-risk subgroups displayed TP53 mutations, increased tumor mutation burden (TMB), and enriched energy metabolism pathways. ScRNA-seq delineated three PCa cell clusters, with high-risk subtypes being sensitive to bendamustine/dacomitinib and resistant to apalutamide/neratinib. A 10-gene prognostic model (e.g., MUC5B, TREM1) categorized patients into high/low-risk groups with distinct survival outcomes (log-rank P < 0.0001). Validation in external datasets confirmed the robust predictive accuracy (AUC: 0.854-0.889). Experimental assays verified subtype-specific drug responses and dysregulation of key model genes. Discussion: This study establishes a TME-driven prognostic framework that connects immune heterogeneity, genomic instability, and therapeutic resistance in PCa. By pinpointing metabolic dependencies and subtype-specific vulnerabilities, our findings provide actionable strategies to circumvent treatment failure, such as targeting energy metabolism or tailoring therapies based on resistance signatures.