Shanshan Li, Yu Zhang, Yao Hong, Wei Yuan, Jihong Sun
{"title":"Anatomy-aware transformer-based model for precise rectal cancer detection and localization in MRI scans.","authors":"Shanshan Li, Yu Zhang, Yao Hong, Wei Yuan, Jihong Sun","doi":"10.1177/08953996251370580","DOIUrl":null,"url":null,"abstract":"<p><p>Rectal cancer is a major cause of cancer-related mortality, requiring accurate diagnosis via MRI scans. However, detecting rectal cancer in MRI scans is challenging due to image complexity and the need for precise localization. While transformer-based object detection has excelled in natural images, applying these models to medical data is hindered by limited medical imaging resources. To address this, we propose the Spatially Prioritized Detection Transformer (SP DETR), which incorporates a Spatially Prioritized (SP) Decoder to constrain anchor boxes to regions of interest (ROI) based on anatomical maps, focusing the model on areas most likely to contain cancer. Additionally, the SP cross-attention mechanism refines the learning of anchor box offsets. To improve small cancer detection, we introduce the Global Context-Guided Feature Fusion Module (GCGFF), leveraging a transformer encoder for global context and a Globally-Guided Semantic Fusion Block (GGSF) to enhance high-level semantic features. Experimental results show that our model significantly improves detection accuracy, especially for small rectal cancers, demonstrating the effectiveness of integrating anatomical priors with transformer-based models for clinical applications.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251370580"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251370580","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Rectal cancer is a major cause of cancer-related mortality, requiring accurate diagnosis via MRI scans. However, detecting rectal cancer in MRI scans is challenging due to image complexity and the need for precise localization. While transformer-based object detection has excelled in natural images, applying these models to medical data is hindered by limited medical imaging resources. To address this, we propose the Spatially Prioritized Detection Transformer (SP DETR), which incorporates a Spatially Prioritized (SP) Decoder to constrain anchor boxes to regions of interest (ROI) based on anatomical maps, focusing the model on areas most likely to contain cancer. Additionally, the SP cross-attention mechanism refines the learning of anchor box offsets. To improve small cancer detection, we introduce the Global Context-Guided Feature Fusion Module (GCGFF), leveraging a transformer encoder for global context and a Globally-Guided Semantic Fusion Block (GGSF) to enhance high-level semantic features. Experimental results show that our model significantly improves detection accuracy, especially for small rectal cancers, demonstrating the effectiveness of integrating anatomical priors with transformer-based models for clinical applications.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes