DIALOGUE: A Generative AI-Based Pre-Post Simulation Study to Enhance Diagnostic Communication in Medical Students Through Virtual Type 2 Diabetes Scenarios.

IF 2.6 Q1 PSYCHOLOGY, CLINICAL
Ricardo Xopan Suárez-García, Quetzal Chavez-Castañeda, Rodrigo Orrico-Pérez, Sebastián Valencia-Marin, Ari Evelyn Castañeda-Ramírez, Efrén Quiñones-Lara, Claudio Adrián Ramos-Cortés, Areli Marlene Gaytán-Gómez, Jonathan Cortés-Rodríguez, Jazel Jarquín-Ramírez, Nallely Guadalupe Aguilar-Marchand, Graciela Valdés-Hernández, Tomás Eduardo Campos-Martínez, Alonso Vilches-Flores, Sonia Leon-Cabrera, Adolfo René Méndez-Cruz, Brenda Ofelia Jay-Jímenez, Héctor Iván Saldívar-Cerón
{"title":"DIALOGUE: A Generative AI-Based Pre-Post Simulation Study to Enhance Diagnostic Communication in Medical Students Through Virtual Type 2 Diabetes Scenarios.","authors":"Ricardo Xopan Suárez-García, Quetzal Chavez-Castañeda, Rodrigo Orrico-Pérez, Sebastián Valencia-Marin, Ari Evelyn Castañeda-Ramírez, Efrén Quiñones-Lara, Claudio Adrián Ramos-Cortés, Areli Marlene Gaytán-Gómez, Jonathan Cortés-Rodríguez, Jazel Jarquín-Ramírez, Nallely Guadalupe Aguilar-Marchand, Graciela Valdés-Hernández, Tomás Eduardo Campos-Martínez, Alonso Vilches-Flores, Sonia Leon-Cabrera, Adolfo René Méndez-Cruz, Brenda Ofelia Jay-Jímenez, Héctor Iván Saldívar-Cerón","doi":"10.3390/ejihpe15080152","DOIUrl":null,"url":null,"abstract":"<p><p>DIALOGUE (DIagnostic AI Learning through Objective Guided User Experience) is a generative artificial intelligence (GenAI)-based training program designed to enhance diagnostic communication skills in medical students. In this single-arm pre-post study, we evaluated whether DIALOGUE could improve students' ability to disclose a type 2 diabetes mellitus (T2DM) diagnosis with clarity, structure, and empathy. Thirty clinical-phase students completed two pre-test virtual encounters with an AI-simulated patient (ChatGPT, GPT-4o), scored by blinded raters using an eight-domain rubric. Participants then engaged in ten asynchronous GenAI scenarios with automated natural-language feedback. Seven days later, they completed two post-test consultations with human standardized patients, again evaluated with the same rubric. Mean total performance increased by 36.7 points (95% CI: 31.4-42.1; <i>p</i> < 0.001), and the proportion of high-performing students rose from 0% to 70%. Gains were significant across all domains, most notably in opening the encounter, closure, and diabetes specific explanation. Multiple regression showed that lower baseline empathy (β = -0.41, <i>p</i> = 0.005) and higher digital self-efficacy (β = 0.35, <i>p</i> = 0.016) independently predicted greater improvement; gender had only a marginal effect. Cluster analysis revealed three learner profiles, with the highest-gain group characterized by low empathy and high digital self-efficacy. Inter-rater reliability was excellent (ICC ≈ 0.90). These findings provide empirical evidence that GenAI-mediated training can meaningfully enhance diagnostic communication and may serve as a scalable, individualized adjunct to conventional medical education.</p>","PeriodicalId":30631,"journal":{"name":"European Journal of Investigation in Health Psychology and Education","volume":"15 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385505/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Investigation in Health Psychology and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ejihpe15080152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
引用次数: 0

Abstract

DIALOGUE (DIagnostic AI Learning through Objective Guided User Experience) is a generative artificial intelligence (GenAI)-based training program designed to enhance diagnostic communication skills in medical students. In this single-arm pre-post study, we evaluated whether DIALOGUE could improve students' ability to disclose a type 2 diabetes mellitus (T2DM) diagnosis with clarity, structure, and empathy. Thirty clinical-phase students completed two pre-test virtual encounters with an AI-simulated patient (ChatGPT, GPT-4o), scored by blinded raters using an eight-domain rubric. Participants then engaged in ten asynchronous GenAI scenarios with automated natural-language feedback. Seven days later, they completed two post-test consultations with human standardized patients, again evaluated with the same rubric. Mean total performance increased by 36.7 points (95% CI: 31.4-42.1; p < 0.001), and the proportion of high-performing students rose from 0% to 70%. Gains were significant across all domains, most notably in opening the encounter, closure, and diabetes specific explanation. Multiple regression showed that lower baseline empathy (β = -0.41, p = 0.005) and higher digital self-efficacy (β = 0.35, p = 0.016) independently predicted greater improvement; gender had only a marginal effect. Cluster analysis revealed three learner profiles, with the highest-gain group characterized by low empathy and high digital self-efficacy. Inter-rater reliability was excellent (ICC ≈ 0.90). These findings provide empirical evidence that GenAI-mediated training can meaningfully enhance diagnostic communication and may serve as a scalable, individualized adjunct to conventional medical education.

Abstract Image

Abstract Image

Abstract Image

对话:一项基于生成人工智能的前后模拟研究,通过虚拟的2型糖尿病场景加强医学生的诊断交流。
DIALOGUE(通过客观引导的用户体验进行诊断AI学习)是一个基于生成式人工智能(GenAI)的培训项目,旨在提高医学生的诊断沟通技能。在这项单臂前-后研究中,我们评估了DIALOGUE是否可以提高学生清晰、结构和共情地披露2型糖尿病(T2DM)诊断的能力。30名临床阶段的学生完成了两次测试前与人工智能模拟患者(ChatGPT, gpt - 40)的虚拟接触,由盲法评分者使用八域评分。然后,参与者参与了10个异步GenAI场景,这些场景都有自动的自然语言反馈。7天后,他们与人类标准化患者完成了两次测试后咨询,再次用相同的标准进行评估。平均总成绩提高了36.7分(95% CI: 31.4-42.1; p < 0.001),高成绩学生的比例从0%上升到70%。在所有领域都取得了显著的进展,最显著的是在开放遭遇、关闭和糖尿病具体解释方面。多元回归显示,较低的基线共情(β = -0.41, p = 0.005)和较高的数字自我效能(β = 0.35, p = 0.016)独立预测更大的改善;性别的影响微乎其微。聚类分析揭示了三种学习者特征,最高收益组的特征是低同理心和高数字自我效能。量表间信度极好(ICC≈0.90)。这些发现提供了经验证据,表明基因人工智能介导的培训可以有意义地加强诊断交流,并可作为传统医学教育的可扩展、个性化辅助手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
12.50%
发文量
111
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信