Motor imagery-based brain-computer interfaces: an exploration of multiclass motor imagery-based control for Emotiv EPOC X.

IF 2.5 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in Neuroinformatics Pub Date : 2025-08-12 eCollection Date: 2025-01-01 DOI:10.3389/fninf.2025.1625279
Paulina Tarara, Iwona Przybył, Julius Schöning, Artur Gunia
{"title":"Motor imagery-based brain-computer interfaces: an exploration of multiclass motor imagery-based control for Emotiv EPOC X.","authors":"Paulina Tarara, Iwona Przybył, Julius Schöning, Artur Gunia","doi":"10.3389/fninf.2025.1625279","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Enhancing the command capacity of motor imagery (MI)-based brain-computer interfaces (BCIs) remains a significant challenge in neuroinformatics, especially for real-world assistive applications. This study explores a multiclass BCI system designed to classify multiple MI tasks using a low-cost EEG device.</p><p><strong>Methods: </strong>A BCI system was developed to classify six mental states: resting state, left and right hand movement imagery, tongue movement, and left and right lateral bending, using EEG data collected with the Emotiv EPOC X headset. Seven participants underwent a body awareness training protocol integrating mindfulness and physical exercises to improve MI performance. Machine learning techniques were applied to extract discriminative features from the EEG signals.</p><p><strong>Results: </strong>Post-training assessments indicated modest improvements in participants' MI proficiency. However, classification performance was limited due to inter- and intra-subject signal variability and the technical constraints of the consumer-grade EEG hardware.</p><p><strong>Discussion: </strong>These findings highlight the value of combining user training with MI-based BCIs and the need to optimize signal quality for reliable performance. The results support the feasibility of scalable, multiclass MI paradigms in low-cost, user-centered neurotechnology applications, while pointing to critical areas for future system enhancement.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1625279"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1625279","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Enhancing the command capacity of motor imagery (MI)-based brain-computer interfaces (BCIs) remains a significant challenge in neuroinformatics, especially for real-world assistive applications. This study explores a multiclass BCI system designed to classify multiple MI tasks using a low-cost EEG device.

Methods: A BCI system was developed to classify six mental states: resting state, left and right hand movement imagery, tongue movement, and left and right lateral bending, using EEG data collected with the Emotiv EPOC X headset. Seven participants underwent a body awareness training protocol integrating mindfulness and physical exercises to improve MI performance. Machine learning techniques were applied to extract discriminative features from the EEG signals.

Results: Post-training assessments indicated modest improvements in participants' MI proficiency. However, classification performance was limited due to inter- and intra-subject signal variability and the technical constraints of the consumer-grade EEG hardware.

Discussion: These findings highlight the value of combining user training with MI-based BCIs and the need to optimize signal quality for reliable performance. The results support the feasibility of scalable, multiclass MI paradigms in low-cost, user-centered neurotechnology applications, while pointing to critical areas for future system enhancement.

Abstract Image

Abstract Image

Abstract Image

基于运动图像的脑机接口:Emotiv EPOC X多类运动图像控制的探索。
增强基于运动图像(MI)的脑机接口(bci)的指挥能力仍然是神经信息学的一个重大挑战,特别是在现实世界的辅助应用中。本研究探索了一种多类脑机接口系统,该系统设计用于使用低成本EEG设备对多个MI任务进行分类。方法:利用Emotiv EPOC X头戴式耳机采集的脑电图数据,建立脑机接口系统,对静息状态、左手和右手运动想象、舌头运动和左右侧屈6种精神状态进行分类。7名参与者接受了身体意识训练方案,将正念和体育锻炼结合起来,以改善心肌梗死的表现。采用机器学习技术从脑电信号中提取判别特征。结果:培训后评估显示参与者的MI熟练程度有适度的提高。然而,由于受试者之间和受试者内部的信号可变性以及消费级EEG硬件的技术限制,分类性能受到限制。讨论:这些发现强调了将用户培训与基于mi的脑机接口相结合的价值,以及优化信号质量以获得可靠性能的必要性。研究结果支持了在低成本、以用户为中心的神经技术应用中可扩展、多类MI范式的可行性,同时指出了未来系统增强的关键领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroinformatics
Frontiers in Neuroinformatics MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
4.80
自引率
5.70%
发文量
132
审稿时长
14 weeks
期刊介绍: Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states. Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信