{"title":"Decoupling model descriptions from execution: a modular paradigm for extensible neurosimulation with EDEN.","authors":"Sotirios Panagiotou, Rene Miedema, Dimitrios Soudris, Christos Strydis","doi":"10.3389/fninf.2025.1572782","DOIUrl":null,"url":null,"abstract":"<p><p>Computational-neuroscience simulators have traditionally been constrained by tightly coupled simulation engines and modeling languages, limiting their flexibility and scalability. Retrofitting these platforms to accommodate new backends is often costly, and sharing models across simulators remains cumbersome. This paper puts forward an alternative approach based on the EDEN neural simulator, which introduces a modular stack that decouples abstract model descriptions from execution. This architecture enhances flexibility and extensibility by enabling seamless integration of multiple backends, including hardware accelerators, without extensive reprogramming. Through the use of NeuroML, simulation developers can focus on high-performance execution, while model users benefit from improved portability without the need to implement custom simulation engines. Additionally, the proposed method for incorporating arbitrary simulation platforms-from model-optimized code kernels to custom hardware devices-as backends offers a more sustainable and adaptable framework for the computational-neuroscience community. The effectiveness of EDEN's approach is demonstrated by integrating two distinct backends: flexHH, an FPGA-based accelerator for extended Hodgkin-Huxley networks, and SpiNNaker, the well-known, neuromorphic platform for large-scale spiking neural networks. Experimental results show that EDEN integrates the different backends with minimal effort while maintaining competitive performance, reaffirming it as a robust, extensible platform that advances the design paradigm for neural simulators by achieving high generality, performance, and usability.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1572782"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1572782","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Computational-neuroscience simulators have traditionally been constrained by tightly coupled simulation engines and modeling languages, limiting their flexibility and scalability. Retrofitting these platforms to accommodate new backends is often costly, and sharing models across simulators remains cumbersome. This paper puts forward an alternative approach based on the EDEN neural simulator, which introduces a modular stack that decouples abstract model descriptions from execution. This architecture enhances flexibility and extensibility by enabling seamless integration of multiple backends, including hardware accelerators, without extensive reprogramming. Through the use of NeuroML, simulation developers can focus on high-performance execution, while model users benefit from improved portability without the need to implement custom simulation engines. Additionally, the proposed method for incorporating arbitrary simulation platforms-from model-optimized code kernels to custom hardware devices-as backends offers a more sustainable and adaptable framework for the computational-neuroscience community. The effectiveness of EDEN's approach is demonstrated by integrating two distinct backends: flexHH, an FPGA-based accelerator for extended Hodgkin-Huxley networks, and SpiNNaker, the well-known, neuromorphic platform for large-scale spiking neural networks. Experimental results show that EDEN integrates the different backends with minimal effort while maintaining competitive performance, reaffirming it as a robust, extensible platform that advances the design paradigm for neural simulators by achieving high generality, performance, and usability.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.