{"title":"Heterologous N- and C-terminal domains of 3D-cry proteins form a functional operon enabling natural crystallization and nematicidal activity.","authors":"Zihong Cui, Donghai Peng","doi":"10.1093/femsle/fnaf080","DOIUrl":null,"url":null,"abstract":"<p><p>Bacillus thuringiensis (Bt) is an insect pathogen that primarily relies on pore-forming toxins known as Cry proteins to kill its insect larval hosts. The effectiveness of Cry proteins has driven a worldwide search for Bt strains to identify and characterize novel insecticidal proteins with different specificities. In this study, Bt genome analysis revealed two consecutive open reading frames that are highly similar to the N-terminal of Cry14Aa1 and the C-terminal of Cry21Ca2, both of which target nematodes. The two genes can be cotranscribed as a functional operon; however, when expressed individually, neither gene forms crystalline inclusions. In contrast, operon-based co-expression restores crystal formation and confers nematicidal activity comparable to that of the full-length Cry14Aa protein. These findings demonstrate that the Bt genome encodes fragmented yet structurally complementary toxin genes that functionally reconstitute via operon-mediated co-expression. This work provides important insights into the functional recombination of Bt toxin genes and offers a novel model for the engineering of biopesticides.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnaf080","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacillus thuringiensis (Bt) is an insect pathogen that primarily relies on pore-forming toxins known as Cry proteins to kill its insect larval hosts. The effectiveness of Cry proteins has driven a worldwide search for Bt strains to identify and characterize novel insecticidal proteins with different specificities. In this study, Bt genome analysis revealed two consecutive open reading frames that are highly similar to the N-terminal of Cry14Aa1 and the C-terminal of Cry21Ca2, both of which target nematodes. The two genes can be cotranscribed as a functional operon; however, when expressed individually, neither gene forms crystalline inclusions. In contrast, operon-based co-expression restores crystal formation and confers nematicidal activity comparable to that of the full-length Cry14Aa protein. These findings demonstrate that the Bt genome encodes fragmented yet structurally complementary toxin genes that functionally reconstitute via operon-mediated co-expression. This work provides important insights into the functional recombination of Bt toxin genes and offers a novel model for the engineering of biopesticides.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.