Emmelie Joe Freudenberg Rasmussen, Jesper Holck, Peter Ruhdal Jensen, Christian Solem
{"title":"Golden oats - Natural fortification of oat milk with riboflavin through fermentation.","authors":"Emmelie Joe Freudenberg Rasmussen, Jesper Holck, Peter Ruhdal Jensen, Christian Solem","doi":"10.1093/femsle/fnaf091","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-based beverages are often fortified with different vitamins, especially B-vitamins, as the raw materials used for their production have a low content of these. Recently, we reported a simple and natural approach for obtaining vitamin B2 (riboflavin) secreting derivatives of the lactic acid bacterium (LAB) Lactococcus lactis, based on the observation that riboflavin can alleviate heat-induced oxidative stress. Here, we explore the potential of these strains for enriching plant-based beverages based on soy and oats, with riboflavin. Three riboflavin producing L. lactis strains were selected for the study: ER10, ALE13, and LDH13, where the latter is a lactate dehydrogenase-deficient derivative of ALE13. We found that ER10 produced more than 50 % more riboflavin in soy milk than ALE13 under static conditions (i.e. with no active aeration). Aerated culturing, in general, increased riboflavin production, especially for LDH13. The protein in oat milk is mostly insoluble and thus unavailable for the L. lactis strains used. To address this, oat milk was treated with food grade proteases, Alcalase® and Flavourzyme®, generating soluble peptides. When LDH13 was grown in the enzymatically treated oat milk with aeration, this resulted in a 600 % increase in riboflavin content (∼6 mg/L), demonstrating that the bioavailability of amino acids limits riboflavin production in oat milk. Here, we found that arginine played a special role in riboflavin production. By supplementing enzymatically treated oat milk with arginine, the riboflavin content could be further increased to 8 mg/L.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416276/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnaf091","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-based beverages are often fortified with different vitamins, especially B-vitamins, as the raw materials used for their production have a low content of these. Recently, we reported a simple and natural approach for obtaining vitamin B2 (riboflavin) secreting derivatives of the lactic acid bacterium (LAB) Lactococcus lactis, based on the observation that riboflavin can alleviate heat-induced oxidative stress. Here, we explore the potential of these strains for enriching plant-based beverages based on soy and oats, with riboflavin. Three riboflavin producing L. lactis strains were selected for the study: ER10, ALE13, and LDH13, where the latter is a lactate dehydrogenase-deficient derivative of ALE13. We found that ER10 produced more than 50 % more riboflavin in soy milk than ALE13 under static conditions (i.e. with no active aeration). Aerated culturing, in general, increased riboflavin production, especially for LDH13. The protein in oat milk is mostly insoluble and thus unavailable for the L. lactis strains used. To address this, oat milk was treated with food grade proteases, Alcalase® and Flavourzyme®, generating soluble peptides. When LDH13 was grown in the enzymatically treated oat milk with aeration, this resulted in a 600 % increase in riboflavin content (∼6 mg/L), demonstrating that the bioavailability of amino acids limits riboflavin production in oat milk. Here, we found that arginine played a special role in riboflavin production. By supplementing enzymatically treated oat milk with arginine, the riboflavin content could be further increased to 8 mg/L.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.