Ultrathin SnS2 Field‐Effect Transistors Exhibiting Temperature‐Enhanced Memory Performance

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Andrea Sessa, Tsotne Dadiani, Sebastiano De Stefano, Ofelia Durante, Aniello Pelella, Catalin Parvulescu, Adrian Dinescu, Martino Aldrigo, Chia‐Nung Kuo, Chin Shan Lue, Gianluca D'Olimpio, Enver Faella, Antonio Politano, Maurizio Passacantando, Antonio Di Bartolomeo
{"title":"Ultrathin SnS2 Field‐Effect Transistors Exhibiting Temperature‐Enhanced Memory Performance","authors":"Andrea Sessa, Tsotne Dadiani, Sebastiano De Stefano, Ofelia Durante, Aniello Pelella, Catalin Parvulescu, Adrian Dinescu, Martino Aldrigo, Chia‐Nung Kuo, Chin Shan Lue, Gianluca D'Olimpio, Enver Faella, Antonio Politano, Maurizio Passacantando, Antonio Di Bartolomeo","doi":"10.1002/aelm.202500327","DOIUrl":null,"url":null,"abstract":"Tin disulfide (SnS<jats:sub>2</jats:sub>) is a 2D semiconductor with a wide bandgap exceeding 2.0 eV. A detailed electrical study of back‐gated Schottky‐barrier field‐effect transistors (FETs) based on multilayer SnS<jats:sub>2</jats:sub> channels is presented. The devices display n‐type conduction, with current levels increasing with temperature due to thermally activated transport across the contacts. A pronounced hysteresis appears in the transfer characteristics, growing linearly with temperature at a rate of ≈0.5 V K<jats:sup>−1</jats:sup>, revealing a temperature‐sensitive response that can be explored for sensing functionalities. Remarkably, the same temperature dependence enhances the memory functionality of the devices: the memory window broadens with increasing temperature, and both retention and endurance improve, in contrast to conventional memory technologies. The observed behavior is linked to the modulation of carrier transport at the contacts, where environmental exposure induces barrier asymmetries and inhomogeneities, as confirmed by analysis using the Güttler–Werner model. These results suggest that SnS<jats:sub>2</jats:sub>‐based FETs may be exploited either for sensing or memory functionality, depending on the operating conditions, outlining a conceptual route toward compact and reconfigurable components in future 2D electronic systems.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"32 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500327","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tin disulfide (SnS2) is a 2D semiconductor with a wide bandgap exceeding 2.0 eV. A detailed electrical study of back‐gated Schottky‐barrier field‐effect transistors (FETs) based on multilayer SnS2 channels is presented. The devices display n‐type conduction, with current levels increasing with temperature due to thermally activated transport across the contacts. A pronounced hysteresis appears in the transfer characteristics, growing linearly with temperature at a rate of ≈0.5 V K−1, revealing a temperature‐sensitive response that can be explored for sensing functionalities. Remarkably, the same temperature dependence enhances the memory functionality of the devices: the memory window broadens with increasing temperature, and both retention and endurance improve, in contrast to conventional memory technologies. The observed behavior is linked to the modulation of carrier transport at the contacts, where environmental exposure induces barrier asymmetries and inhomogeneities, as confirmed by analysis using the Güttler–Werner model. These results suggest that SnS2‐based FETs may be exploited either for sensing or memory functionality, depending on the operating conditions, outlining a conceptual route toward compact and reconfigurable components in future 2D electronic systems.
超薄SnS2场效应晶体管显示温度增强记忆性能
二硫化锡(SnS2)是一种具有超过2.0 eV的宽禁带的二维半导体。对基于多层SnS2通道的背控肖特基势垒场效应晶体管(fet)进行了详细的电学研究。器件显示n型传导,由于触点之间的热激活传输,电流水平随着温度的升高而增加。传输特性中出现明显的滞后,以≈0.5 V K−1的速率随温度线性增长,揭示了可以用于传感功能的温度敏感响应。值得注意的是,同样的温度依赖性增强了器件的记忆功能:与传统的记忆技术相比,记忆窗口随着温度的升高而变宽,保留率和耐久性都有所提高。观察到的行为与接触处载流子输运的调制有关,其中环境暴露导致屏障不对称和不均匀性,正如使用gttler - werner模型的分析所证实的那样。这些结果表明,基于SnS2的fet可以用于传感或记忆功能,这取决于操作条件,概述了未来二维电子系统中紧凑和可重构组件的概念路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信