Machine learning prediction of electric field-dependent absorption coefficient in CdTe/CdS quantum dots

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Ed-Dahmouny , N. Zeiri , R. Arraoui , P. Başer , N. Es-Sbai , A. Sali , Mohammad N. Murshed , C.A. Duque
{"title":"Machine learning prediction of electric field-dependent absorption coefficient in CdTe/CdS quantum dots","authors":"A. Ed-Dahmouny ,&nbsp;N. Zeiri ,&nbsp;R. Arraoui ,&nbsp;P. Başer ,&nbsp;N. Es-Sbai ,&nbsp;A. Sali ,&nbsp;Mohammad N. Murshed ,&nbsp;C.A. Duque","doi":"10.1016/j.mtphys.2025.101851","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated the electric field-induced optical absorption coefficient in CdTe/CdS core-shell quantum dots embedded within titanium dioxide (TiO<sub>2</sub>) and silicon dioxide (SiO<sub>2</sub>) matrices. To model these changes, we employed a comparative approach, utilizing Artificial Neural Networks (ANN), Decision Trees (DT), Random Forest Regressors (RFR), and Light Gradient Boosting Machine (LightGBM) and comparing their predictions with numerical finite element method simulations. Our findings revealed that TiO<sub>2</sub> embedding resulted in a redshift and amplitude increase of the absorption resonance, whereas SiO<sub>2</sub> embedding or isolation caused a blueshift and amplitude decrease. Notably, the Random Forest Regressor exhibited the most accurate predictions, underscoring the effectiveness of machine learning in simulating and predicting the optical properties of quantum dot systems.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"58 ","pages":"Article 101851"},"PeriodicalIF":9.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254252932500207X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the electric field-induced optical absorption coefficient in CdTe/CdS core-shell quantum dots embedded within titanium dioxide (TiO2) and silicon dioxide (SiO2) matrices. To model these changes, we employed a comparative approach, utilizing Artificial Neural Networks (ANN), Decision Trees (DT), Random Forest Regressors (RFR), and Light Gradient Boosting Machine (LightGBM) and comparing their predictions with numerical finite element method simulations. Our findings revealed that TiO2 embedding resulted in a redshift and amplitude increase of the absorption resonance, whereas SiO2 embedding or isolation caused a blueshift and amplitude decrease. Notably, the Random Forest Regressor exhibited the most accurate predictions, underscoring the effectiveness of machine learning in simulating and predicting the optical properties of quantum dot systems.

Abstract Image

Abstract Image

CdTe/CdS量子点电场依赖吸收系数的机器学习预测
研究了嵌入二氧化钛(TiO2)和二氧化硅(SiO2)基质中的CdTe/CdS核壳量子点的电场诱导光吸收系数。为了模拟这些变化,我们采用了比较方法,利用人工神经网络(ANN)、决策树(DT)、随机森林回归(RFR)和光梯度增强机(LightGBM),并将它们的预测与数值有限元方法模拟进行比较。结果表明,TiO2包埋导致吸收共振的红移和振幅增大,而SiO2包埋或隔离导致吸收共振的蓝移和振幅减小。值得注意的是,随机森林回归器展示了最准确的预测,强调了机器学习在模拟和预测量子点系统光学特性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信