Hierarchical optimize scheduling strategy for orderly charging of electric vehicles based on PTM and CNN-Transformer-LightGBM model

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS
Lu Xuexuan , Yang Dejian , Qian Minhui , Jin Fenghe
{"title":"Hierarchical optimize scheduling strategy for orderly charging of electric vehicles based on PTM and CNN-Transformer-LightGBM model","authors":"Lu Xuexuan ,&nbsp;Yang Dejian ,&nbsp;Qian Minhui ,&nbsp;Jin Fenghe","doi":"10.1016/j.segan.2025.101944","DOIUrl":null,"url":null,"abstract":"<div><div>With the significant increase in the penetration rate of electric vehicles, uncoordinated charging of EV clusters can exacerbate peak-to-valley differences, resulting in a \"peak on peak\" phenomenon. This paper proposes a hierarchical optimize scheduling strategy for orderly charging based on the Probability Transition Matrix algorithm (PTM) using CNN-Transformer-LightGBM. Firstly, we establish electric vehicle load prediction models for CNN-Transformer-LightGBM separately, and use the inverse variance method to weight and combine the two models into a CNN-Transformer-LightGBM composite model; To optimize the continuous parameters within the model, TPM is used for hyperparameter optimization to achieve optimal charging control. Simulation results indicate that the proposed strategy effectively reduces the grid load's peak-to-valley difference by 43 % and decreases comprehensive grid load variance by 32 %.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"44 ","pages":"Article 101944"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467725003261","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the significant increase in the penetration rate of electric vehicles, uncoordinated charging of EV clusters can exacerbate peak-to-valley differences, resulting in a "peak on peak" phenomenon. This paper proposes a hierarchical optimize scheduling strategy for orderly charging based on the Probability Transition Matrix algorithm (PTM) using CNN-Transformer-LightGBM. Firstly, we establish electric vehicle load prediction models for CNN-Transformer-LightGBM separately, and use the inverse variance method to weight and combine the two models into a CNN-Transformer-LightGBM composite model; To optimize the continuous parameters within the model, TPM is used for hyperparameter optimization to achieve optimal charging control. Simulation results indicate that the proposed strategy effectively reduces the grid load's peak-to-valley difference by 43 % and decreases comprehensive grid load variance by 32 %.
基于PTM和CNN-Transformer-LightGBM模型的电动汽车有序充电分层优化调度策略
随着电动汽车普及率的显著提高,电动汽车集群的不协调充电会加剧峰谷差异,导致“峰对峰”现象。本文提出了一种基于概率转移矩阵算法(PTM)的分层优化有序充电调度策略。首先,分别建立了CNN-Transformer-LightGBM的电动汽车负荷预测模型,利用方差逆法对两个模型进行加权并组合成CNN-Transformer-LightGBM复合模型;为了优化模型内的连续参数,采用TPM进行超参数优化,实现最优装药控制。仿真结果表明,该策略有效地将电网负荷峰谷差降低了43% %,将电网综合负荷方差降低了32% %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信