Micromechanical evaluation of the effective stress parameter using the multiphase lattice Boltzmann method and investigation of its hysteresis

IF 6.2 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Reihaneh Hosseini, Krishna Kumar
{"title":"Micromechanical evaluation of the effective stress parameter using the multiphase lattice Boltzmann method and investigation of its hysteresis","authors":"Reihaneh Hosseini,&nbsp;Krishna Kumar","doi":"10.1016/j.compgeo.2025.107564","DOIUrl":null,"url":null,"abstract":"<div><div>The effective stress parameter, <span><math><mi>χ</mi></math></span>, is essential for calculating the effective stress in unsaturated soils. Experimental measurements have captured different relationships between <span><math><mi>χ</mi></math></span> and the degree of saturation, <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>; however, they have not been able to explain the specific shapes of the <span><math><mi>χ</mi></math></span>-<span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> curves. Theoretical solutions express <span><math><mi>χ</mi></math></span> as a function of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> and the air–water interfacial area, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>w</mi><mi>n</mi></mrow></msub></math></span>; however, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>w</mi><mi>n</mi></mrow></msub></math></span> is difficult to predict, limiting further investigation of <span><math><mi>χ</mi></math></span> variation. This study presents an alternative micromechanical approach for studying <span><math><mi>χ</mi></math></span> by simulating the pore-scale distribution of the two fluid phases in unsaturated soils using the multiphase lattice Boltzmann method (LBM). We develop an algorithm for measuring <span><math><mi>χ</mi></math></span> based on the suction and surface tension forces applied to each grain. Using this algorithm, we simulate the <span><math><mi>χ</mi></math></span>-<span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> curve over a full hydraulic cycle for a synthetic 3D granular soil column with immobile spherical grains. We find that <span><math><mrow><mi>χ</mi><mo>=</mo><mn>1</mn></mrow></math></span> at <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>χ</mi><mo>=</mo><mn>0</mn></mrow></math></span> at <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, while <span><math><mrow><mi>χ</mi><mo>&gt;</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> for all other saturations. The maximum divergence of <span><math><mi>χ</mi></math></span> from <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> occurs at the transition from/to the pendular regime. We also observe that the <span><math><mi>χ</mi></math></span>-<span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> curve is hysteretic; <span><math><mi>χ</mi></math></span> is larger during wetting (imbibition) compared to drying (drainage) due to the larger contribution of surface tension forces.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"188 ","pages":"Article 107564"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25005130","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The effective stress parameter, χ, is essential for calculating the effective stress in unsaturated soils. Experimental measurements have captured different relationships between χ and the degree of saturation, Sr; however, they have not been able to explain the specific shapes of the χ-Sr curves. Theoretical solutions express χ as a function of Sr and the air–water interfacial area, awn; however, awn is difficult to predict, limiting further investigation of χ variation. This study presents an alternative micromechanical approach for studying χ by simulating the pore-scale distribution of the two fluid phases in unsaturated soils using the multiphase lattice Boltzmann method (LBM). We develop an algorithm for measuring χ based on the suction and surface tension forces applied to each grain. Using this algorithm, we simulate the χ-Sr curve over a full hydraulic cycle for a synthetic 3D granular soil column with immobile spherical grains. We find that χ=1 at Sr=1 and χ=0 at Sr=0, while χ>Sr for all other saturations. The maximum divergence of χ from Sr occurs at the transition from/to the pendular regime. We also observe that the χ-Sr curve is hysteretic; χ is larger during wetting (imbibition) compared to drying (drainage) due to the larger contribution of surface tension forces.
用多相晶格玻尔兹曼方法评价有效应力参数的微力学性质及其迟滞性研究
有效应力参数χ是计算非饱和土有效应力所必需的参数。实验测量已经捕获了χ与饱和度Sr之间的不同关系;然而,他们还不能解释χ-Sr曲线的具体形状。理论解将χ表示为Sr和空气-水界面面积的函数;然而,芒很难预测,限制了进一步调查的χ变异。本文采用多相晶格玻尔兹曼方法(LBM)模拟非饱和土中两相流体的孔隙尺度分布,提出了一种研究χ的微力学方法。我们开发了一种基于施加在每个颗粒上的吸力和表面张力来测量χ的算法。使用该算法,我们模拟了具有固定球形颗粒的合成三维颗粒土柱在整个水力循环中的χ-Sr曲线。我们发现在Sr=1时χ=1,在Sr=0时χ=0,而χ>;Sr适用于所有其他饱和度。χ从Sr的最大发散发生在从/到摆态的过渡。我们还观察到χ-Sr曲线是滞后的;由于表面张力的贡献更大,在湿润(吸胀)过程中,χ比干燥(排水)过程中更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信