Sulforaphane Repairs Oxidative Stress Damage Induced by Oxidized Fish Oil by Activating Nrf2 in Litopenaeus vannamei

IF 3.9 2区 农林科学 Q1 FISHERIES
Shiping Yang, Leyuan Feng, Junliang Luo, Jichang Jian, Shuanghu Cai, Huiling Liu
{"title":"Sulforaphane Repairs Oxidative Stress Damage Induced by Oxidized Fish Oil by Activating Nrf2 in Litopenaeus vannamei","authors":"Shiping Yang,&nbsp;Leyuan Feng,&nbsp;Junliang Luo,&nbsp;Jichang Jian,&nbsp;Shuanghu Cai,&nbsp;Huiling Liu","doi":"10.1155/anu/6665220","DOIUrl":null,"url":null,"abstract":"<p>Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component in regulating oxidative stress. Sulforaphane (SFN) is a natural antioxidant and gene <i>Nrf2</i> agonist that can increase the antioxidant capacity of the organism and reduce oxidative stress. However, research on the repair of oxidative stress damage by SFN in aquatic animals remains extremely scarce. In order to further explore the function and role of SFN in the repair of oxidative stress injury in aquatic animals, this study took <i>Litopenaeus vannamei</i> as the research object. We established an oxidative stress model of <i>L. vannamei</i> through 6% oxidized fish oil (OFO) feeding. Methods, such as RNA interference (RNAi), qPCR, histopathological analysis, and TUNEL assay, were used to detect the changes in the oxidative stress status of <i>L. vannamei</i>. The results showed that the expression of <i>Nrf2</i> in the hepatopancreas of <i>L. vannamei</i> in the double-stranded RNA (dsRNA)-<i>Nrf2</i> + SFN group was significantly higher than that in the dsRNA-<i>Nrf2</i> group and control group at 24 h (<i>p</i> &lt; 0.05). The transcription levels of antioxidant and autophagy genes in the SFN group were significantly higher than those in the control group (<i>p</i> &lt; 0.05), and the expression of related genes in the dsRNA-<i>Nrf2</i> + SFN group was also higher than that in the dsRNA-<i>Nrf2</i> group. Histopathology showed that <i>Nrf2</i> knockdown would aggravate hepatopancreatic apoptosis and vacuolation, while SFN treatment after <i>Nrf2</i> knockdown could alleviate hepatopancreatic injury and apoptosis caused by OFO. The results indicated that SFN could repair the oxidative stress injury of <i>L. vannamei</i> induced by OFO by activating <i>Nrf2</i>. This study investigated the role of SFN in alleviating and repairing the oxidative stress damage in <i>L. vannamei</i> caused by OFO, aiming to provide a theoretical basis for the research on the antioxidant effect of SFN and the regulation of the antioxidant capacity of shrimp.</p>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/6665220","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/6665220","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component in regulating oxidative stress. Sulforaphane (SFN) is a natural antioxidant and gene Nrf2 agonist that can increase the antioxidant capacity of the organism and reduce oxidative stress. However, research on the repair of oxidative stress damage by SFN in aquatic animals remains extremely scarce. In order to further explore the function and role of SFN in the repair of oxidative stress injury in aquatic animals, this study took Litopenaeus vannamei as the research object. We established an oxidative stress model of L. vannamei through 6% oxidized fish oil (OFO) feeding. Methods, such as RNA interference (RNAi), qPCR, histopathological analysis, and TUNEL assay, were used to detect the changes in the oxidative stress status of L. vannamei. The results showed that the expression of Nrf2 in the hepatopancreas of L. vannamei in the double-stranded RNA (dsRNA)-Nrf2 + SFN group was significantly higher than that in the dsRNA-Nrf2 group and control group at 24 h (p < 0.05). The transcription levels of antioxidant and autophagy genes in the SFN group were significantly higher than those in the control group (p < 0.05), and the expression of related genes in the dsRNA-Nrf2 + SFN group was also higher than that in the dsRNA-Nrf2 group. Histopathology showed that Nrf2 knockdown would aggravate hepatopancreatic apoptosis and vacuolation, while SFN treatment after Nrf2 knockdown could alleviate hepatopancreatic injury and apoptosis caused by OFO. The results indicated that SFN could repair the oxidative stress injury of L. vannamei induced by OFO by activating Nrf2. This study investigated the role of SFN in alleviating and repairing the oxidative stress damage in L. vannamei caused by OFO, aiming to provide a theoretical basis for the research on the antioxidant effect of SFN and the regulation of the antioxidant capacity of shrimp.

Abstract Image

萝卜硫素通过激活Nrf2修复氧化鱼油诱导的凡纳滨对虾氧化应激损伤
核因子红细胞2相关因子2 (Nrf2)是调控氧化应激的重要成分。萝卜硫素(sulforaphan, SFN)是一种天然抗氧化剂和基因Nrf2激动剂,可以提高机体的抗氧化能力,减少氧化应激。然而,关于SFN修复水生动物氧化应激损伤的研究仍然非常少。为了进一步探讨SFN在水生动物氧化应激损伤修复中的功能和作用,本研究以凡纳滨对虾为研究对象。以6%氧化鱼油(OFO)为饲料,建立了凡纳梅对虾的氧化应激模型。采用RNA干扰(RNAi)、qPCR、组织病理学分析、TUNEL等方法检测凡纳梅氧化应激状态的变化。结果显示,24h时,双链RNA (dsRNA)-Nrf2 + SFN组凡纳梅肝胰脏Nrf2的表达量显著高于dsRNA-Nrf2组和对照组(p < 0.05)。SFN组抗氧化基因和自噬基因的转录水平显著高于对照组(p < 0.05), dsRNA-Nrf2 + SFN组相关基因的表达也高于dsRNA-Nrf2组。组织病理学结果显示,Nrf2敲低可加重肝胰腺凋亡和空泡形成,而Nrf2敲低后的SFN处理可减轻OFO引起的肝胰腺损伤和凋亡。结果表明,SFN可以通过激活Nrf2来修复OFO诱导的南美扁豆氧化应激损伤。本研究探讨SFN在缓解和修复OFO引起的凡纳梅对虾氧化应激损伤中的作用,旨在为研究SFN的抗氧化作用和对虾抗氧化能力的调节提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquaculture Nutrition
Aquaculture Nutrition 农林科学-渔业
CiteScore
7.20
自引率
8.60%
发文量
131
审稿时长
3 months
期刊介绍: Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers. Aquaculture Nutrition publishes papers which strive to: increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research. improve understanding of the relationships between nutrition and the environmental impact of aquaculture. increase understanding of the relationships between nutrition and processing, product quality, and the consumer. help aquaculturalists improve their management and understanding of the complex discipline of nutrition. help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信