Decoding of the Saltiness-Enhancing Peptides Derived from Walnut Meal Protein and Evaluation of Their Mechanism of Interaction with ENaC/TMC4 Receptors
Pimiao Huang, Yuhang Jiang, Cunchao Zhao, Huayi Suo*, Chun Cui* and Wei Wang,
{"title":"Decoding of the Saltiness-Enhancing Peptides Derived from Walnut Meal Protein and Evaluation of Their Mechanism of Interaction with ENaC/TMC4 Receptors","authors":"Pimiao Huang, Yuhang Jiang, Cunchao Zhao, Huayi Suo*, Chun Cui* and Wei Wang, ","doi":"10.1021/acs.jafc.5c08085","DOIUrl":null,"url":null,"abstract":"<p >Walnut meal protein hydrolysates showing a significant saltiness-enhancing effect were obtained through single-factor optimization and ultrafiltration. An integrated virtual screening strategy was employed to identify eight candidate saltiness-enhancing peptides, which were then evaluated for their saltiness-enhancing effect via sensory evaluations, electronic tongue, and salivary aldosterone. Incorporating the peptides AVEFDKWAGP, GPEHDW, and DDPRFT into NaCl solutions (3, 6, and 9 mg/mL) enhanced saltiness intensity by 19.79 ± 4.30 to 91.18 ± 10.00% and extended saltiness duration by 20.00 ± 0 to 66.67 ± 0%. The saltiness-enhancing peptide also increased salivary aldosterone concentrations by 18.30 ± 2.76 to 82.63 ± 7.19%, potentially contributing to a salt-reducing effect. Molecular docking revealed that hydrogen bonds played key roles in the binding interactions. Molecular dynamics simulations confirmed the stability and compactness of the peptide-receptor complexes. These results offer a practical strategy for formulating lower-sodium foods and expand the application prospects of walnut meal protein.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"73 36","pages":"22684–22697"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.5c08085","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Walnut meal protein hydrolysates showing a significant saltiness-enhancing effect were obtained through single-factor optimization and ultrafiltration. An integrated virtual screening strategy was employed to identify eight candidate saltiness-enhancing peptides, which were then evaluated for their saltiness-enhancing effect via sensory evaluations, electronic tongue, and salivary aldosterone. Incorporating the peptides AVEFDKWAGP, GPEHDW, and DDPRFT into NaCl solutions (3, 6, and 9 mg/mL) enhanced saltiness intensity by 19.79 ± 4.30 to 91.18 ± 10.00% and extended saltiness duration by 20.00 ± 0 to 66.67 ± 0%. The saltiness-enhancing peptide also increased salivary aldosterone concentrations by 18.30 ± 2.76 to 82.63 ± 7.19%, potentially contributing to a salt-reducing effect. Molecular docking revealed that hydrogen bonds played key roles in the binding interactions. Molecular dynamics simulations confirmed the stability and compactness of the peptide-receptor complexes. These results offer a practical strategy for formulating lower-sodium foods and expand the application prospects of walnut meal protein.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.