Revisiting Pisarenko’s formula: Effective mass estimation, thermopower–conductivity relation, and maximum power factor prediction

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Andrei Novitskii , Takao Mori
{"title":"Revisiting Pisarenko’s formula: Effective mass estimation, thermopower–conductivity relation, and maximum power factor prediction","authors":"Andrei Novitskii ,&nbsp;Takao Mori","doi":"10.1016/j.mtphys.2025.101845","DOIUrl":null,"url":null,"abstract":"<div><div>The thermopower <span><math><mi>α</mi></math></span> (also known as the Seebeck coefficient) is one of the most fundamental material characteristics for understanding charge carrier transport in thermoelectric materials. Here, we revisit the Pisarenko formula for the thermopower, which was traditionally considered valid only for non-degenerate semiconductors. We demonstrate that regardless of the dominating scattering mechanism, the Pisarenko formula describes accurately enough the relationship between thermopower <span><math><mi>α</mi></math></span> and charge carrier concentration <span><math><mi>n</mi></math></span> beyond the non-degenerate limit. Moreover, the Pisarenko formula provides a simple thermopower–conductivity relation, <span><math><mrow><mi>α</mi><mo>=</mo><mo>±</mo><mfrac><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow><mrow><mi>e</mi></mrow></mfrac><mrow><mo>(</mo><mi>b</mi><mo>−</mo><mo>ln</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>b</mi></math></span> is a constant determined by the scattering mechanism and weighted mobility <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>, and <span><math><mi>σ</mi></math></span> is the electrical conductivity. This relation is valid for materials with <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>90</mn><mspace></mspace><mstyle><mi>µ</mi><mi>V</mi></mstyle><mspace></mspace><msup><mrow><mstyle><mi>K</mi></mstyle></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> when acoustic phonon scattering is predominant. This offers an alternative way to analyze electron transport when Hall measurements are difficult or inaccessible. Additionally, we show how the Pisarenko formula can be used to estimate the maximum power factor of a thermoelectric material from the weighted mobility of a single, not necessarily optimized, sample at any given temperature.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"58 ","pages":"Article 101845"},"PeriodicalIF":9.7000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325002019","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The thermopower α (also known as the Seebeck coefficient) is one of the most fundamental material characteristics for understanding charge carrier transport in thermoelectric materials. Here, we revisit the Pisarenko formula for the thermopower, which was traditionally considered valid only for non-degenerate semiconductors. We demonstrate that regardless of the dominating scattering mechanism, the Pisarenko formula describes accurately enough the relationship between thermopower α and charge carrier concentration n beyond the non-degenerate limit. Moreover, the Pisarenko formula provides a simple thermopower–conductivity relation, α=±kBe(blnσ), where b is a constant determined by the scattering mechanism and weighted mobility μw, and σ is the electrical conductivity. This relation is valid for materials with α>90µVK1 when acoustic phonon scattering is predominant. This offers an alternative way to analyze electron transport when Hall measurements are difficult or inaccessible. Additionally, we show how the Pisarenko formula can be used to estimate the maximum power factor of a thermoelectric material from the weighted mobility of a single, not necessarily optimized, sample at any given temperature.

Abstract Image

Abstract Image

重温Pisarenko的公式:有效质量估计,热电功率-电导率关系,和最大功率因数预测
热电功率α(也称为塞贝克系数)是理解热电材料中载流子输运的最基本的材料特性之一。在这里,我们重新审视热电的Pisarenko公式,传统上认为它只适用于非简并半导体。我们证明了不管主要的散射机制是什么,Pisarenko公式都足够准确地描述了热功率α和载流子浓度n在非简并极限之外的关系。此外,Pisarenko公式提供了一个简单的热电功率-电导率关系,α=±kBe(b−lnσ),其中b是由散射机制和加权迁移率μw决定的常数,σ是电导率。对于α>;90µVK−1的材料,当声子散射占主导地位时,这种关系是有效的。这提供了另一种方法来分析电子传输时,霍尔测量是困难的或不可接近的。此外,我们展示了Pisarenko公式如何用于估计热电材料在任何给定温度下的最大功率因数,从单个(不一定是优化的)样品的加权迁移率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信