Amirhossein Esteghamat;Zheng Hao;Mohammad Rezaei;Walid El Huni;Huseyin Cakmak;Gilberto Curatola;Samir Mouhoubi;Elison Matioli
{"title":"2.7 kV E-Mode Multichannel GaN-on-Si Based on p-Type NiO/SiO2 Junction Tri-Gate","authors":"Amirhossein Esteghamat;Zheng Hao;Mohammad Rezaei;Walid El Huni;Huseyin Cakmak;Gilberto Curatola;Samir Mouhoubi;Elison Matioli","doi":"10.1109/LED.2025.3584531","DOIUrl":null,"url":null,"abstract":"In this work, an E-mode multichannel HEMT is demonstrated based on p-type NiO/SiO2 as a gate stack to form a junction tri-gate structure. NiO provides a high hole concentration (<inline-formula> <tex-math>$\\approx ~10^{{19}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>${}^{-{3}}$ </tex-math></inline-formula>), resulting in an effective depletion of electrons in the multiple 2DEG channels under the gate. A thin SiO2 layer acts as a sacrificial layer, preventing damage to the fins during NiO deposition. As a result, E-mode operation can be achieved with 3x-larger tri-gate fins, compared to SiO2 alone, with <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> of 0.7 V (at <inline-formula> <tex-math>$1~\\mu $ </tex-math></inline-formula>A/mm), negligible threshold voltage hysteresis (<inline-formula> <tex-math>$\\Delta {V}_{\\text {th}}$ </tex-math></inline-formula> of 0.05 V), together with small on-resistance (<inline-formula> <tex-math>${R}_{\\text {ON}}$ </tex-math></inline-formula>) of 2.8 m<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula>cm2 for a gate-to-drain separation (<inline-formula> <tex-math>${L}_{\\text {GD}}$ </tex-math></inline-formula>) of <inline-formula> <tex-math>$20~\\mu $ </tex-math></inline-formula>m. In addition, the devices showed exceptional off-state characteristics, including breakdown voltage (<inline-formula> <tex-math>${V}_{\\text {br}}$ </tex-math></inline-formula>) of 2.7 kV, and ON/OFF current ratio of <inline-formula> <tex-math>$10^{{9}}$ </tex-math></inline-formula>, showcasing the potential of the p-NiO/SiO2 gate stack for high-performance E-mode power devices.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 9","pages":"1589-1592"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11059959/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, an E-mode multichannel HEMT is demonstrated based on p-type NiO/SiO2 as a gate stack to form a junction tri-gate structure. NiO provides a high hole concentration ($\approx ~10^{{19}}$ cm${}^{-{3}}$ ), resulting in an effective depletion of electrons in the multiple 2DEG channels under the gate. A thin SiO2 layer acts as a sacrificial layer, preventing damage to the fins during NiO deposition. As a result, E-mode operation can be achieved with 3x-larger tri-gate fins, compared to SiO2 alone, with ${V}_{\text {th}}$ of 0.7 V (at $1~\mu $ A/mm), negligible threshold voltage hysteresis ($\Delta {V}_{\text {th}}$ of 0.05 V), together with small on-resistance (${R}_{\text {ON}}$ ) of 2.8 m$\Omega \cdot $ cm2 for a gate-to-drain separation (${L}_{\text {GD}}$ ) of $20~\mu $ m. In addition, the devices showed exceptional off-state characteristics, including breakdown voltage (${V}_{\text {br}}$ ) of 2.7 kV, and ON/OFF current ratio of $10^{{9}}$ , showcasing the potential of the p-NiO/SiO2 gate stack for high-performance E-mode power devices.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.