Sumaiya Wahid;Kasidit Toprasertpong;Mahnaz Islam;Aravindh Kumar;Muhammed Ahosan Ul Karim;Harsono Simka;Wong H. S. Philip;Eric Pop
{"title":"Role of Oxygen Deficiencies on the Stability of Indium Tin Oxide (ITO) Transistors","authors":"Sumaiya Wahid;Kasidit Toprasertpong;Mahnaz Islam;Aravindh Kumar;Muhammed Ahosan Ul Karim;Harsono Simka;Wong H. S. Philip;Eric Pop","doi":"10.1109/LED.2025.3587706","DOIUrl":null,"url":null,"abstract":"We investigate the threshold voltage (<inline-formula> <tex-math>${V}_{T}$ </tex-math></inline-formula>) stability of indium tin oxide (ITO) transistors under positive gate bias stress, comparing the performance of <inline-formula> <tex-math>$\\text{Al}_{\\mathbf {{2}}}\\text {O}_{\\mathbf {{3}}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\text{HfO}_{\\mathbf {{2}}}$ </tex-math></inline-formula> dielectrics. We attribute the unusual negative <inline-formula> <tex-math>${V} _{\\mathbf {T}}$ </tex-math></inline-formula> shift (<inline-formula> <tex-math>$\\Delta {V}_{T} \\lt 0$ </tex-math></inline-formula> V) of our top-gated devices to oxygen scavenging by the dielectric. Notably, devices with <inline-formula> <tex-math>$\\text{Al}_{\\mathbf {{2}}}\\text {O}_{\\mathbf {{3}}}$ </tex-math></inline-formula> dielectric achieve median <inline-formula> <tex-math>$\\vert \\Delta {V}_{T}\\vert \\le 10$ </tex-math></inline-formula> mV at room temperature, <inline-formula> <tex-math>$\\sim 10\\times $ </tex-math></inline-formula> lower than devices with <inline-formula> <tex-math>$\\text{HfO}_{\\mathbf {{2}}}$ </tex-math></inline-formula>, highlighting the significant influence of the dielectric layer. We also demonstrate that opposing effects of the top and bottom gates in a dual-gated transistor can be used to attain a median <inline-formula> <tex-math>$\\vert \\Delta {V}_{T}\\vert \\approx ~150$ </tex-math></inline-formula> mV with 2 V gate stress voltage, at elevated temperature (85°C), which is <inline-formula> <tex-math>$\\sim 3\\times $ </tex-math></inline-formula> lower than the top-gated devices under identical stress conditions.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 9","pages":"1553-1556"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11077434/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the threshold voltage (${V}_{T}$ ) stability of indium tin oxide (ITO) transistors under positive gate bias stress, comparing the performance of $\text{Al}_{\mathbf {{2}}}\text {O}_{\mathbf {{3}}}$ and $\text{HfO}_{\mathbf {{2}}}$ dielectrics. We attribute the unusual negative ${V} _{\mathbf {T}}$ shift ($\Delta {V}_{T} \lt 0$ V) of our top-gated devices to oxygen scavenging by the dielectric. Notably, devices with $\text{Al}_{\mathbf {{2}}}\text {O}_{\mathbf {{3}}}$ dielectric achieve median $\vert \Delta {V}_{T}\vert \le 10$ mV at room temperature, $\sim 10\times $ lower than devices with $\text{HfO}_{\mathbf {{2}}}$ , highlighting the significant influence of the dielectric layer. We also demonstrate that opposing effects of the top and bottom gates in a dual-gated transistor can be used to attain a median $\vert \Delta {V}_{T}\vert \approx ~150$ mV with 2 V gate stress voltage, at elevated temperature (85°C), which is $\sim 3\times $ lower than the top-gated devices under identical stress conditions.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.