A Hermetically Sealed Micro Vacuum Ultraviolet Light Source for Detection of VOCs

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Weilong You;Wen Chen;Yong Xie;Sheng Liu;Guoqiang Wu
{"title":"A Hermetically Sealed Micro Vacuum Ultraviolet Light Source for Detection of VOCs","authors":"Weilong You;Wen Chen;Yong Xie;Sheng Liu;Guoqiang Wu","doi":"10.1109/LED.2025.3587719","DOIUrl":null,"url":null,"abstract":"Vacuum ultraviolet (VUV) light sources play a crucial role in volatile organic compounds (VOCs) detection and other analytical applications. In this letter, a hermetically sealed micro-chip with nitrogen-plasma for VUV light source is demonstrated. The designed <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>VUV light source chip is fabricated based on silicon-on-insulator platform and hermetically sealed in a ceramic carrier equipped with a chip-scale MgF2 window for VUV light transmission. To verify device performance, the fabricated <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>VUV light source chip is integrated with a commercial ionization chamber for achieving a micro photoionization detector (<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>PID). Measurement results illustrate that the reported <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>VUV light source chip can emit VUV light with wavelength as low as 113.72 nm and the constructed <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>PID achieves an ionization energy up to 10.9 eV. It exhibits a superior normalized photoionization efficiency, compared with a commercial PID typically with an ionization energy of 10.6 eV. Furthermore, its leakage rate (<inline-formula> <tex-math>${1}.{5}\\times {10} ^{-{12}}$ </tex-math></inline-formula> atm<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula> cc/s) is three orders of magnitude lower than that of commercial VUV lamps, indicating a significantly extended operational liftime. It offers an innovative solution for high-performance VUV light source in <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>PID, which provides a promising approach for the miniaturization and portability of VOCs detection devices, gas chromatograph and other ionization-based analytical instruments.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 9","pages":"1616-1619"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11077381/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Vacuum ultraviolet (VUV) light sources play a crucial role in volatile organic compounds (VOCs) detection and other analytical applications. In this letter, a hermetically sealed micro-chip with nitrogen-plasma for VUV light source is demonstrated. The designed $\mu $ VUV light source chip is fabricated based on silicon-on-insulator platform and hermetically sealed in a ceramic carrier equipped with a chip-scale MgF2 window for VUV light transmission. To verify device performance, the fabricated $\mu $ VUV light source chip is integrated with a commercial ionization chamber for achieving a micro photoionization detector ( $\mu $ PID). Measurement results illustrate that the reported $\mu $ VUV light source chip can emit VUV light with wavelength as low as 113.72 nm and the constructed $\mu $ PID achieves an ionization energy up to 10.9 eV. It exhibits a superior normalized photoionization efficiency, compared with a commercial PID typically with an ionization energy of 10.6 eV. Furthermore, its leakage rate ( ${1}.{5}\times {10} ^{-{12}}$ atm $\cdot $ cc/s) is three orders of magnitude lower than that of commercial VUV lamps, indicating a significantly extended operational liftime. It offers an innovative solution for high-performance VUV light source in $\mu $ PID, which provides a promising approach for the miniaturization and portability of VOCs detection devices, gas chromatograph and other ionization-based analytical instruments.
一种用于挥发性有机化合物检测的密闭微真空紫外光源
真空紫外(VUV)光源在挥发性有机化合物(VOCs)检测和其他分析应用中起着至关重要的作用。本文介绍了一种用于紫外光源的氮等离子体密封微芯片。所设计的$\mu $ VUV光源芯片是基于绝缘体上硅平台制造的,并密封在带有芯片级MgF2窗口的陶瓷载体中,用于VUV光传输。为了验证器件性能,将制造的$\mu $ VUV光源芯片与商用电离室集成,以实现微型光电离探测器($\mu $ PID)。测量结果表明,所述$\mu $ VUV光源芯片可以发射波长低至113.72 nm的VUV光,所构建的$\mu $ PID的电离能高达10.9 eV。与通常电离能为10.6 eV的商用PID相比,它具有优越的归一化光电离效率。此外,其泄漏率为100亿美元。{5}\乘以{10}^{-{12}}$ atm $\cdot $ cc/s)比商用VUV灯低三个数量级,表明工作寿命显着延长。它为$\mu $ PID中的高性能VUV光源提供了一种创新的解决方案,为VOCs检测设备、气相色谱仪和其他基于电离的分析仪器的小型化和便携性提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信