Enhanced Mobility and Stability of Amorphous IZO TFTs With Homojunction Formation and Back-Channel Engineering

IF 2.4 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kaiyuan Lai;Yurong Liu;Ming Li;Dantong Wang;Yifan Li;Ruohe Yao;Kuiwei Geng;Weijian Liu
{"title":"Enhanced Mobility and Stability of Amorphous IZO TFTs With Homojunction Formation and Back-Channel Engineering","authors":"Kaiyuan Lai;Yurong Liu;Ming Li;Dantong Wang;Yifan Li;Ruohe Yao;Kuiwei Geng;Weijian Liu","doi":"10.1109/JEDS.2025.3598941","DOIUrl":null,"url":null,"abstract":"High-performance oxide semiconductor thin-film transistors (TFTs) are fabricated by forming a homojunction-structured channel layer with double-layer In-doped ZnO (IZO) with different In contents. The a-I0.9ZO/a-I0.5ZO TFTs exhibit a field-effect mobility (<inline-formula> <tex-math>$\\mu_{\\mathrm{FE}}$ </tex-math></inline-formula>) of <inline-formula> <tex-math>$31.5 \\mathrm{~cm}^2 / \\mathrm{V} \\cdot \\mathrm{s}$ </tex-math></inline-formula>, an on-off current ratio (<inline-formula> <tex-math>$I_{\\text {on }} / I_{\\text {off }}$ </tex-math></inline-formula>) of <inline-formula> <tex-math>$2 \\times 10^9$ </tex-math></inline-formula>, a subthreshold swing (SS) of 78 mV/decade, and a threshold voltage (<inline-formula> <tex-math>$V_{\\text {th }}$ </tex-math></inline-formula>) of 1.3 V. The <inline-formula> <tex-math>$\\mu_{\\mathrm{FE}}$ </tex-math></inline-formula> is 2 times higher than that of the single-layer a-I0.5ZO TFT, which is attributed to the formation of the quasi two-dimensional electron gas (q-2DEG) due to the existence of the conduction band offset at the a-I0.9ZO/a-I0.5ZO homojunction interface, thus weakening the electron scattering. Moreover, the electrical properties of the bilayer-channel IZO TFTs were further enhanced by using CF4-plasma back-channel treatment and an Al2O3 thin film as back-channel passivation layer (BPL). The device exhibits a high <inline-formula> <tex-math>$\\mu_{\\mathrm{FE}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$50.4 \\mathrm{~cm}^2 / \\mathrm{V} \\cdot \\mathrm{s}$ </tex-math></inline-formula>, a high <inline-formula> <tex-math>$\\mathrm{I}_{\\mathrm{on}} / \\mathrm{I}_{\\text {off }}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$6 \\times 10^9$ </tex-math></inline-formula>, and a low SS of 65 mV/decade. The threshold voltage shifts (<inline-formula> <tex-math>$\\Delta V_{\\text {th }}$ </tex-math></inline-formula>) were only -0.21 V and 0.29 V when the device was subjected to positive and negative gate-bias stresses for 10,000 s, respectively. The involving mechanism of the enhancement of device performance was elucidated in detail based on ultraviolet photoelectron spectroscopy (UPS), UV-visible spectroscopy, X-ray photoelectron spectroscopy (XPS), and capacitance-voltage (C-V) profiling technique analyses.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"997-1005"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11124539","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11124539/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance oxide semiconductor thin-film transistors (TFTs) are fabricated by forming a homojunction-structured channel layer with double-layer In-doped ZnO (IZO) with different In contents. The a-I0.9ZO/a-I0.5ZO TFTs exhibit a field-effect mobility ( $\mu_{\mathrm{FE}}$ ) of $31.5 \mathrm{~cm}^2 / \mathrm{V} \cdot \mathrm{s}$ , an on-off current ratio ( $I_{\text {on }} / I_{\text {off }}$ ) of $2 \times 10^9$ , a subthreshold swing (SS) of 78 mV/decade, and a threshold voltage ( $V_{\text {th }}$ ) of 1.3 V. The $\mu_{\mathrm{FE}}$ is 2 times higher than that of the single-layer a-I0.5ZO TFT, which is attributed to the formation of the quasi two-dimensional electron gas (q-2DEG) due to the existence of the conduction band offset at the a-I0.9ZO/a-I0.5ZO homojunction interface, thus weakening the electron scattering. Moreover, the electrical properties of the bilayer-channel IZO TFTs were further enhanced by using CF4-plasma back-channel treatment and an Al2O3 thin film as back-channel passivation layer (BPL). The device exhibits a high $\mu_{\mathrm{FE}}$ of $50.4 \mathrm{~cm}^2 / \mathrm{V} \cdot \mathrm{s}$ , a high $\mathrm{I}_{\mathrm{on}} / \mathrm{I}_{\text {off }}$ of $6 \times 10^9$ , and a low SS of 65 mV/decade. The threshold voltage shifts ( $\Delta V_{\text {th }}$ ) were only -0.21 V and 0.29 V when the device was subjected to positive and negative gate-bias stresses for 10,000 s, respectively. The involving mechanism of the enhancement of device performance was elucidated in detail based on ultraviolet photoelectron spectroscopy (UPS), UV-visible spectroscopy, X-ray photoelectron spectroscopy (XPS), and capacitance-voltage (C-V) profiling technique analyses.
利用同质结形成和反向通道工程增强非晶IZO tft的迁移率和稳定性
采用不同In含量的双层掺杂ZnO (IZO)形成同结结构的沟道层,制备了高性能的氧化半导体薄膜晶体管(TFTs)。a- i0.9 zo /a- i0.5 zo TFTs的场效应迁移率($\mu_{\mathrm{FE}}$)为$31.5 \mathrm{~cm}^2 / \mathrm{V} \cdot \mathrm{s}$,通断电流比($I_{\text {on }} / I_{\text {off }}$)为$2 \times 10^9$,亚阈值摆幅(SS)为78 mV/ 10年,阈值电压($V_{\text {th }}$)为1.3 V。$\mu_{\mathrm{FE}}$比单层a-I0.5ZO TFT高2倍,这是由于a-I0.9ZO/a-I0.5ZO同质结界面处存在导带偏移,形成了准二维电子气(q-2DEG),从而减弱了电子散射。此外,采用cf4等离子体反向通道处理和Al2O3薄膜作为反向通道钝化层(BPL),进一步提高了双层通道IZO tft的电学性能。该器件的高$\mu_{\mathrm{FE}}$为$50.4 \mathrm{~cm}^2 / \mathrm{V} \cdot \mathrm{s}$,高$\mathrm{I}_{\mathrm{on}} / \mathrm{I}_{\text {off }}$为$6 \times 10^9$,低SS为65 mV/ 10年。当器件承受正、负栅极偏置应力10,000 s时,阈值电压位移($\Delta V_{\text {th }}$)分别仅为-0.21 V和0.29 V。基于紫外光电子能谱(UPS)、紫外可见能谱(uv -可见光)、x射线光电子能谱(XPS)和电容-电压(C-V)谱分析技术,详细阐述了器件性能增强的作用机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信