Zhiwei Zheng;Chenyang Huang;Yufeng Jin;Meng Zhang;Yan Yan;Daohua Zhang;Man Hoi Wong;Hoi Sing Kwok;Lei Lu
{"title":"ALD Al2O3-Engineered Schottky Barrier Interface for Amorphous Indium–Zinc Oxide","authors":"Zhiwei Zheng;Chenyang Huang;Yufeng Jin;Meng Zhang;Yan Yan;Daohua Zhang;Man Hoi Wong;Hoi Sing Kwok;Lei Lu","doi":"10.1109/TED.2025.3592642","DOIUrl":null,"url":null,"abstract":"The interaction between metal and oxide semiconductors (OSs) is critical for advancing OS applications in large-area, flexible, and heterogeneously integrated electronics. Both ohmic and Schottky contacts are essential in these devices. The abundant intrinsic defects in OSs promote ohmic contact formation but adversely affect the Schottky barrier interface, especially in OSs with diverse sub-bandgap states, such as amorphous indium–zinc oxide (a-IZO). This study introduces an ultrathin alumina (Al2O3) interlayer, deposited via plasma-enhanced atomic layer deposition (PEALD), to effectively reduce interface defects and metal-induced gap states (MIGSs) between a-IZO and the platinum (Pt) anode. The top-anode a-IZO Schottky barrier diode (SBD) demonstrates a Schottky barrier height (<inline-formula> <tex-math>$\\Phi _{\\text {B}}$ </tex-math></inline-formula>) of 0.73 eV and an ideality factor (n) of 1.35. Such ultrathin Al2O3 engineering effectively enhances the feasibility of high-quality OS Schottky contact.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 9","pages":"5004-5010"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11105480/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction between metal and oxide semiconductors (OSs) is critical for advancing OS applications in large-area, flexible, and heterogeneously integrated electronics. Both ohmic and Schottky contacts are essential in these devices. The abundant intrinsic defects in OSs promote ohmic contact formation but adversely affect the Schottky barrier interface, especially in OSs with diverse sub-bandgap states, such as amorphous indium–zinc oxide (a-IZO). This study introduces an ultrathin alumina (Al2O3) interlayer, deposited via plasma-enhanced atomic layer deposition (PEALD), to effectively reduce interface defects and metal-induced gap states (MIGSs) between a-IZO and the platinum (Pt) anode. The top-anode a-IZO Schottky barrier diode (SBD) demonstrates a Schottky barrier height ($\Phi _{\text {B}}$ ) of 0.73 eV and an ideality factor (n) of 1.35. Such ultrathin Al2O3 engineering effectively enhances the feasibility of high-quality OS Schottky contact.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.