Modeling and Analysis of Terminal Capacitances in High-Power Devices: Application to p-GaN Gate HEMTs

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mojtaba Alaei;Herbert De Pauw;Elena Fabris;Stefaan Decoutere;Jan Doutreloigne;Johan Lauwaert;Benoit Bakeroot
{"title":"Modeling and Analysis of Terminal Capacitances in High-Power Devices: Application to p-GaN Gate HEMTs","authors":"Mojtaba Alaei;Herbert De Pauw;Elena Fabris;Stefaan Decoutere;Jan Doutreloigne;Johan Lauwaert;Benoit Bakeroot","doi":"10.1109/TED.2025.3593216","DOIUrl":null,"url":null,"abstract":"Experimental data from gallium nitride (GaN)-on-Si p-GaN gate high-electron-mobility transistors (HEMTs) reveal a strong dependence of terminal capacitances-particularly <inline-formula> <tex-math>$C_{\\mathrm{BS}}, C_{\\mathrm{BG}}$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$C_{\\mathrm{BD}}$ </tex-math></inline-formula>-on the drain-to-source voltage (<inline-formula> <tex-math>$V_{\\mathrm{DS}}$ </tex-math></inline-formula>), indicating significant coupling through the bulk contact. This behavior, linked to progressive depletion of the 2-D electron gas (2DEG) under field plates, is not adequately captured by existing compact models. This work presents a detailed analysis of the dynamics of <inline-formula> <tex-math>$V_{\\text {DS }}$ </tex-math></inline-formula>-dependent depletion under field plates and develops an enhanced MIT Virtual Source GaN FET (MVSG) compact model that incorporates bulk-related capacitance contributions. The proposed model introduces a depletion-dependent modulation of channel and fringing capacitances and captures channel length modulation (CLM) effects due to progressive depletion of 2DEG with increasing <inline-formula> <tex-math>$V_{\\text {DS }}$ </tex-math></inline-formula>. The extended model shows excellent agreement with the measured capacitance behavior and provides a deeper understanding of the substrate interaction mechanisms. This advancement supports the design of next-generation high-voltage GaN power ICs, such as integrated half-bridges and gate drivers, by enabling accurate prediction of terminal capacitances in simulations that include substrate effects.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 9","pages":"4817-4823"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11106948/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental data from gallium nitride (GaN)-on-Si p-GaN gate high-electron-mobility transistors (HEMTs) reveal a strong dependence of terminal capacitances-particularly $C_{\mathrm{BS}}, C_{\mathrm{BG}}$ , and $C_{\mathrm{BD}}$ -on the drain-to-source voltage ( $V_{\mathrm{DS}}$ ), indicating significant coupling through the bulk contact. This behavior, linked to progressive depletion of the 2-D electron gas (2DEG) under field plates, is not adequately captured by existing compact models. This work presents a detailed analysis of the dynamics of $V_{\text {DS }}$ -dependent depletion under field plates and develops an enhanced MIT Virtual Source GaN FET (MVSG) compact model that incorporates bulk-related capacitance contributions. The proposed model introduces a depletion-dependent modulation of channel and fringing capacitances and captures channel length modulation (CLM) effects due to progressive depletion of 2DEG with increasing $V_{\text {DS }}$ . The extended model shows excellent agreement with the measured capacitance behavior and provides a deeper understanding of the substrate interaction mechanisms. This advancement supports the design of next-generation high-voltage GaN power ICs, such as integrated half-bridges and gate drivers, by enabling accurate prediction of terminal capacitances in simulations that include substrate effects.
大功率器件中终端电容的建模与分析:在p-GaN栅极hemt中的应用
氮化镓(GaN) on- si p-GaN栅极高电子迁移率晶体管(hemt)的实验数据显示,终端电容(特别是C_{\ mathm {BS}}、C_{\ mathm {BG}}$和C_{\ mathm {BD}}$)对漏源极电压(V_{\ mathm {DS}}$)有很强的依赖性,表明通过体接触存在显著耦合。这种行为与场板下二维电子气体(2DEG)的逐渐耗尽有关,现有的紧凑模型没有充分捕捉到这种行为。本工作详细分析了场极板下$V_{\text {DS}}$依赖损耗的动力学,并开发了一种增强的MIT虚拟源GaN场效应管(MVSG)紧凑模型,该模型包含了与体积相关的电容贡献。该模型引入了信道和边缘电容的耗尽依赖调制,并捕获了由于2DEG随着$V_{\text {DS}}$的增加而逐渐耗尽而导致的信道长度调制(CLM)效应。扩展模型与测量的电容行为表现出良好的一致性,并提供了对衬底相互作用机制的更深层次的理解。这一进展支持下一代高压GaN功率ic的设计,如集成半桥和栅极驱动器,通过在包括衬底效应的模拟中准确预测终端电容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信