Controlling Bias Field of Pinned Layer Stacks for Double‐Pinned‐Layer Magnetic Tunnel Junction for STT‐MRAM

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shujun Ye, Koichi Nishioka
{"title":"Controlling Bias Field of Pinned Layer Stacks for Double‐Pinned‐Layer Magnetic Tunnel Junction for STT‐MRAM","authors":"Shujun Ye, Koichi Nishioka","doi":"10.1002/aelm.202500132","DOIUrl":null,"url":null,"abstract":"Double‐pinned‐layer Magnetic Tunnel Junction (Double PL MTJ) enhances spin‐transfer‐torque magneto‐resistive random‐access memory (STT‐MRAM) performance by requiring anti‐parallel magnetization between both PLs at free layer interfaces and minimizing magnetostatic bias field (<jats:italic>H</jats:italic><jats:sub>bias</jats:sub>) from both PLs to enable reliable switching. In this study, a numerical method is established to accurately calculate <jats:italic>H</jats:italic><jats:sub>bias</jats:sub> and investigate PL designs that simultaneously fulfill both conditions. Among the configurations examined, a bottom PL composed of anti‐parallel (AP) coupled three magnetic layers (FM1, FM2, and FM3) combined with a top PL consisting of two such layers (FM4 and FM5) is identified a optimal. This configuration achieved the desired anti‐parallel magnetization at FL interfaces and effectively suppressed <jats:italic>H</jats:italic><jats:sub>bias</jats:sub>. The proposed structure enables a robust design strategy for Double PL MTJ, addressing key limitations such as high write current and paving the way for MTJ for large‐scale application in STT‐MRAM.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"71 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500132","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Double‐pinned‐layer Magnetic Tunnel Junction (Double PL MTJ) enhances spin‐transfer‐torque magneto‐resistive random‐access memory (STT‐MRAM) performance by requiring anti‐parallel magnetization between both PLs at free layer interfaces and minimizing magnetostatic bias field (Hbias) from both PLs to enable reliable switching. In this study, a numerical method is established to accurately calculate Hbias and investigate PL designs that simultaneously fulfill both conditions. Among the configurations examined, a bottom PL composed of anti‐parallel (AP) coupled three magnetic layers (FM1, FM2, and FM3) combined with a top PL consisting of two such layers (FM4 and FM5) is identified a optimal. This configuration achieved the desired anti‐parallel magnetization at FL interfaces and effectively suppressed Hbias. The proposed structure enables a robust design strategy for Double PL MTJ, addressing key limitations such as high write current and paving the way for MTJ for large‐scale application in STT‐MRAM.
STT - MRAM双钉住层磁隧道结钉住层堆的偏置场控制
双钉钉层磁隧道结(双PL MTJ)通过要求两个PLs在自由层接口处的反平行磁化和最小化两个PLs的静磁偏置场(Hbias)来实现可靠的开关,从而提高了自旋传递扭矩磁阻随机存取存储器(STT - MRAM)的性能。在本研究中,建立了一种数值方法来精确计算Hbias,并研究同时满足这两个条件的PL设计。在检查的配置中,由反平行(AP)耦合的三个磁性层(FM1, FM2和FM3)组成的底部PL与由两个这样的层(FM4和FM5)组成的顶部PL被认为是最优的。这种结构在FL界面上实现了所需的反平行磁化,并有效地抑制了Hbias。所提出的结构为双PL MTJ提供了强大的设计策略,解决了高写入电流等关键限制,并为MTJ在STT - MRAM中的大规模应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信