Yan Chen;Gaofeng Jin;Haojie Xu;Yu Cui;Lei Zeng;Xiang Gao
{"title":"A Dual-Path SPD/PFD PLL With PVT-Insensitive Loop Bandwidth","authors":"Yan Chen;Gaofeng Jin;Haojie Xu;Yu Cui;Lei Zeng;Xiang Gao","doi":"10.1109/LSSC.2025.3589568","DOIUrl":null,"url":null,"abstract":"This work presents an 8.5–14 GHz dual-path sampling phase detection (SPD)/phase frequency detection (PFD) phase-locked loop (PLL) (DP-SPFDPLL), with extended frequency/phase detection ranges, built-in frequency-locked loop (FLL) function, and stable loop bandwidth across PVT corners. An SPD and a PFD are placed on the dual paths, responsible for phase/frequency locking and temperature drift tracking. An SPD replica is introduced to align the locking points of the integral and proportional paths. A Slew Rate Calibration technique using a Ring Oscillator is proposed to make the slew rate of sampling ramps stable. Implemented in 7 nm FinFET, the 8.5–14 GHz DP-SPFDPLL achieves <inline-formula> <tex-math>$75~fs_{rms}$ </tex-math></inline-formula> integrated jitter and −252 dB PLL Figure-of-Merit (FoM)J.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"237-240"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11082263/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents an 8.5–14 GHz dual-path sampling phase detection (SPD)/phase frequency detection (PFD) phase-locked loop (PLL) (DP-SPFDPLL), with extended frequency/phase detection ranges, built-in frequency-locked loop (FLL) function, and stable loop bandwidth across PVT corners. An SPD and a PFD are placed on the dual paths, responsible for phase/frequency locking and temperature drift tracking. An SPD replica is introduced to align the locking points of the integral and proportional paths. A Slew Rate Calibration technique using a Ring Oscillator is proposed to make the slew rate of sampling ramps stable. Implemented in 7 nm FinFET, the 8.5–14 GHz DP-SPFDPLL achieves $75~fs_{rms}$ integrated jitter and −252 dB PLL Figure-of-Merit (FoM)J.