Irredundant generating sets for matrix algebras

IF 1.1 3区 数学 Q1 MATHEMATICS
Yonatan Blumenthal, Uriya A. First
{"title":"Irredundant generating sets for matrix algebras","authors":"Yonatan Blumenthal,&nbsp;Uriya A. First","doi":"10.1016/j.laa.2025.08.008","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>F</em> be a field. We show that the largest irredundant generating sets for the algebra of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices over <em>F</em> have <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span> elements when <span><math><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span>. (A result of Laffey states that the answer is <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> when <span><math><mi>n</mi><mo>&gt;</mo><mn>2</mn></math></span>, but its proof contains an error.) We further give a classification of the largest irredundant generating sets when <span><math><mi>n</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span> and <em>F</em> is algebraically closed. We use this description to compute the dimension of the variety of <span><math><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-tuples of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices which form an irredundant generating set when <span><math><mi>n</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>, and draw some consequences to <em>locally redundant</em> generation of Azumaya algebras. In the course of proving the classification, we also determine the largest sets <em>S</em> of subspaces of <span><math><msup><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> with the property that every <span><math><mi>V</mi><mo>∈</mo><mi>S</mi></math></span> admits a matrix stabilizing every subspace in <span><math><mi>S</mi><mo>−</mo><mo>{</mo><mi>V</mi><mo>}</mo></math></span> and not stabilizing <em>V</em>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"727 ","pages":"Pages 308-335"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003441","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be a field. We show that the largest irredundant generating sets for the algebra of n×n matrices over F have 2n1 elements when n>1. (A result of Laffey states that the answer is 2n2 when n>2, but its proof contains an error.) We further give a classification of the largest irredundant generating sets when n{2,3} and F is algebraically closed. We use this description to compute the dimension of the variety of (2n1)-tuples of n×n matrices which form an irredundant generating set when n{2,3}, and draw some consequences to locally redundant generation of Azumaya algebras. In the course of proving the classification, we also determine the largest sets S of subspaces of F3 with the property that every VS admits a matrix stabilizing every subspace in S{V} and not stabilizing V.
矩阵代数的无冗余生成集
设F是一个场。我们证明了F上n×n矩阵代数的最大无冗余生成集在n>;1时具有2n−1个元素。(Laffey的结果表明,当n>;2时,答案是2n−2,但其证明中存在一个错误。)进一步给出了当n∈{2,3}且F为代数闭时最大无冗余生成集的分类。利用这一描述,我们计算了当n∈{2,3}时,n×n矩阵的(2n−1)元组的变种的维数,并给出了Azumaya代数局部冗余生成的一些结论。在证明分类的过程中,我们还确定了F3的子空间的最大集合S,其性质是每个V∈S允许一个矩阵稳定S - {V}中的每一子空间而不稳定V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信