Substrate-aware computational design of two-dimensional materials

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Arslan Mazitov, Ivan Kruglov, Alexey V. Yanilkin, Aleksey V. Arsenin, Valentyn S. Volkov, Dmitry G. Kvashnin, Artem R. Oganov, Kostya S. Novoselov
{"title":"Substrate-aware computational design of two-dimensional materials","authors":"Arslan Mazitov, Ivan Kruglov, Alexey V. Yanilkin, Aleksey V. Arsenin, Valentyn S. Volkov, Dmitry G. Kvashnin, Artem R. Oganov, Kostya S. Novoselov","doi":"10.1038/s41524-025-01754-8","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) materials attract considerable attention due to their remarkable electronic, mechanical and optical properties. Despite their use in combination with substrates in practical applications, computational studies often neglect the effects of substrate interactions for simplicity. This study presents a novel method for predicting the atomic structure of 2D materials on substrates by combining an evolutionary algorithm, a lattice-matching technique, an automated machine-learning interatomic potentials training protocol, and the ab initio thermodynamics approach. Using the molybdenum-sulfur system on a sapphire substrate as a case study, we reveal several new stable and metastable structures, including previously known 1H-MoS<sub>2</sub> and newly found <i>P</i><i>m</i><i>m</i><i>a</i> Mo<sub>3</sub>S<sub>2</sub>, <span>\\(P\\bar{1}\\)</span> Mo<sub>2</sub>S, <i>P</i>2<sub>1</sub><i>m</i> Mo<sub>5</sub>S<sub>3</sub>, and <i>P</i>4<i>m</i><i>m</i> Mo<sub>4</sub>S, where the Mo<sub>4</sub>S structure is specifically stabilized by interaction with the substrate. Finally, we use the ab initio thermodynamics approach to predict the synthesis conditions of the discovered structures in the parameter space of the commonly used chemical vapor deposition technique.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"71 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01754-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) materials attract considerable attention due to their remarkable electronic, mechanical and optical properties. Despite their use in combination with substrates in practical applications, computational studies often neglect the effects of substrate interactions for simplicity. This study presents a novel method for predicting the atomic structure of 2D materials on substrates by combining an evolutionary algorithm, a lattice-matching technique, an automated machine-learning interatomic potentials training protocol, and the ab initio thermodynamics approach. Using the molybdenum-sulfur system on a sapphire substrate as a case study, we reveal several new stable and metastable structures, including previously known 1H-MoS2 and newly found Pmma Mo3S2, \(P\bar{1}\) Mo2S, P21m Mo5S3, and P4mm Mo4S, where the Mo4S structure is specifically stabilized by interaction with the substrate. Finally, we use the ab initio thermodynamics approach to predict the synthesis conditions of the discovered structures in the parameter space of the commonly used chemical vapor deposition technique.

Abstract Image

二维材料的基板感知计算设计
二维(2D)材料由于其卓越的电子、机械和光学特性而引起了人们的广泛关注。尽管它们在实际应用中与底物结合使用,但计算研究往往为了简单而忽略了底物相互作用的影响。本研究提出了一种结合进化算法、晶格匹配技术、自动机器学习原子间势训练协议和从头算热力学方法来预测基板上二维材料原子结构的新方法。以蓝宝石衬底上的钼硫体系为例,我们发现了几种新的稳定和亚稳结构,包括先前已知的1H-MoS2和新发现的Pmma Mo3S2, \(P\bar{1}\) Mo2S, P21m Mo5S3和P4mm Mo4S,其中Mo4S结构通过与衬底的相互作用而特别稳定。最后,我们利用从头算热力学方法在常用化学气相沉积技术的参数空间中预测了所发现结构的合成条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信