Transferable dispersion-aware machine learning interatomic potentials for multilayer transition metal dichalcogenide heterostructures

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yusuf Shaidu, Mit H. Naik, Steven G. Louie, Jeffrey B. Neaton
{"title":"Transferable dispersion-aware machine learning interatomic potentials for multilayer transition metal dichalcogenide heterostructures","authors":"Yusuf Shaidu, Mit H. Naik, Steven G. Louie, Jeffrey B. Neaton","doi":"10.1038/s41524-025-01761-9","DOIUrl":null,"url":null,"abstract":"<p>Stacking atomically thin transition metal dichalcogenides (TMDs) into heterostructures enables exploration of exotic quantum phases, particularly through twist-angle-controlled moiré superlattices. These structures exhibit novel electronic and optical behaviors driven by atomic-scale structural reconstruction. However, studying such systems with DFT is computationally demanding due to their large unit cells and van der Waals (vdW) interactions between layers. To address this, we develop a transferable neural network potential (NNP) that includes long-range vdW corrections up to 12Å with minimal overhead. Trained on vdW-corrected DFT data for Mo- and W-based TMDs with S, Se, and Te, the NNP accurately models monolayers, bilayers, heterostructures, and their interaction with h-BN substrates. It reproduces equilibrium structures, energy landscapes, phonon dispersions, and matches experimental atomic reconstructions in twisted WS<sub>2</sub> and MoS<sub>2</sub>/WSe<sub>2</sub> systems. We demonstrate that our NNP achieves DFT-level accuracy and high computational efficiency, enabling large-scale simulations of TMD-based moiré superlattices both with and without substrates.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"29 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01761-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stacking atomically thin transition metal dichalcogenides (TMDs) into heterostructures enables exploration of exotic quantum phases, particularly through twist-angle-controlled moiré superlattices. These structures exhibit novel electronic and optical behaviors driven by atomic-scale structural reconstruction. However, studying such systems with DFT is computationally demanding due to their large unit cells and van der Waals (vdW) interactions between layers. To address this, we develop a transferable neural network potential (NNP) that includes long-range vdW corrections up to 12Å with minimal overhead. Trained on vdW-corrected DFT data for Mo- and W-based TMDs with S, Se, and Te, the NNP accurately models monolayers, bilayers, heterostructures, and their interaction with h-BN substrates. It reproduces equilibrium structures, energy landscapes, phonon dispersions, and matches experimental atomic reconstructions in twisted WS2 and MoS2/WSe2 systems. We demonstrate that our NNP achieves DFT-level accuracy and high computational efficiency, enabling large-scale simulations of TMD-based moiré superlattices both with and without substrates.

Abstract Image

多层过渡金属二硫化物异质结构的可转移色散感知机器学习原子间势
将原子薄的过渡金属二硫族化合物(TMDs)堆叠成异质结构,可以探索奇异的量子相,特别是通过扭转角控制的莫尔纳米超晶格。这些结构在原子尺度结构重建的驱动下表现出新的电子和光学行为。然而,由于这些系统具有较大的单元格和层间的范德华相互作用,用DFT研究这些系统需要大量的计算量。为了解决这个问题,我们开发了一种可转移的神经网络电位(NNP),它包括远程vdW校正,最高可达12Å,开销最小。NNP通过对含有S、Se和Te的Mo和w基tmd的vdw校正DFT数据进行训练,可以准确地模拟单层、双层、异质结构及其与h-BN衬底的相互作用。它再现了扭曲WS2和MoS2/WSe2体系中的平衡结构、能量景观、声子色散,并匹配了实验原子重建。我们证明了我们的NNP实现了dft级的精度和高计算效率,能够大规模模拟基于tmd的moir超晶格,无论是有衬底还是没有衬底。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信