Prediction of intrinsic multiferroicity and large valley polarization in a layered Janus material

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yulin Feng, Shaoxuan Qi, Yangyang Ren, Meng Liu, Na Liu, Meifeng Liu, Qing Yang, Sheng Meng
{"title":"Prediction of intrinsic multiferroicity and large valley polarization in a layered Janus material","authors":"Yulin Feng, Shaoxuan Qi, Yangyang Ren, Meng Liu, Na Liu, Meifeng Liu, Qing Yang, Sheng Meng","doi":"10.1038/s41524-025-01760-w","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) intrinsic multiferroics have attracted considerable attention for the next generation of advanced information technologies. Herein, we report that bilayer Janus FeSCl, a novel 2D system designed by substituting sulfur in monolayer 1T-FeCl<sub>2</sub>, exhibits a giant spontaneous valley polarization and intrinsic magnetoelectric coupling. This Janus structure exhibits a ground-state bilayer structure that breaks space-inversion symmetry, enabling sliding ferroelectricity. Each monolayer displays robust intralayer ferromagnetic ordering, while the bilayer hosts interlayer antiferromagnetic alignment with opposing magnetic moments. Crucially, ferrovalley-mediated coupling links ferroelectric polarization and antiferromagnetic order, allowing electric-field-driven magnetic reversal. Notably, the direction of the net magnetic moment can be reversed through ferroelectric polarization switching, enabling nonvolatile control of the magnetism. The elucidated mechanisms are generalizable to diverse 2D material families, offering a universal framework for designing atomic-scale multiferroics. This work not only establishes foundational insights into 2D multiferroics but also advances the understanding of coupled charge-spin-valley physics in low-dimensional systems.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"18 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01760-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) intrinsic multiferroics have attracted considerable attention for the next generation of advanced information technologies. Herein, we report that bilayer Janus FeSCl, a novel 2D system designed by substituting sulfur in monolayer 1T-FeCl2, exhibits a giant spontaneous valley polarization and intrinsic magnetoelectric coupling. This Janus structure exhibits a ground-state bilayer structure that breaks space-inversion symmetry, enabling sliding ferroelectricity. Each monolayer displays robust intralayer ferromagnetic ordering, while the bilayer hosts interlayer antiferromagnetic alignment with opposing magnetic moments. Crucially, ferrovalley-mediated coupling links ferroelectric polarization and antiferromagnetic order, allowing electric-field-driven magnetic reversal. Notably, the direction of the net magnetic moment can be reversed through ferroelectric polarization switching, enabling nonvolatile control of the magnetism. The elucidated mechanisms are generalizable to diverse 2D material families, offering a universal framework for designing atomic-scale multiferroics. This work not only establishes foundational insights into 2D multiferroics but also advances the understanding of coupled charge-spin-valley physics in low-dimensional systems.

Abstract Image

层状Janus材料的本征多铁性和大谷极化预测
二维(2D)本征多铁性在下一代先进信息技术中引起了相当大的关注。在此,我们报告了双层Janus FeSCl,一种新的二维系统,通过取代单层1T-FeCl2中的硫而设计,表现出巨大的自发谷极化和本征磁电耦合。这种Janus结构呈现出一种基态双层结构,打破了空间反演对称,实现了滑动铁电性。每个单层显示出强大的层内铁磁有序,而双层具有相反磁矩的层间反铁磁排列。至关重要的是,铁谷介导的耦合将铁电极化和反铁磁秩序联系起来,从而允许电场驱动的磁反转。值得注意的是,净磁矩的方向可以通过铁电极化开关逆转,从而实现对磁性的非易失性控制。所阐明的机制可推广到不同的二维材料族,为设计原子尺度的多铁性材料提供了一个通用框架。这项工作不仅建立了对二维多铁性的基础见解,而且还推进了对低维系统中耦合电荷-自旋谷物理的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信