Framework for AI Integration in Citizen Science: Insights From the SKILIKET Project

IF 1 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
José G. Mercado-Rojas;Rasikh Tariq;Juan A. Marchina-Herrera;Inna Artemova;Jorge Sanabria-Z
{"title":"Framework for AI Integration in Citizen Science: Insights From the SKILIKET Project","authors":"José G. Mercado-Rojas;Rasikh Tariq;Juan A. Marchina-Herrera;Inna Artemova;Jorge Sanabria-Z","doi":"10.1109/RITA.2025.3599155","DOIUrl":null,"url":null,"abstract":"Citizen science projects that use Internet of Things (IoT) devices are transforming environmental education by enabling real-time, participatory data collection. However, few initiatives integrate Artificial Intelligence (AI) to support the analysis and prediction of environmental dynamics, as well as their interpretation and deeper learning outcomes. This article presents a framework for incorporating AI into IoT-based citizen science educational systems, exemplified by the SKILIKET project. SKILIKET combines quantitative sensor data (e.g., temperature, CO2, humidity, UV, and noise) with qualitative human observations (e.g., perceived smells, sounds, and visual cues) collected via a mobile app to help participants better understand socioecological phenomena in their environments. Using a Design-Based Research (DBR) approach, the study explores AI functionalities that could support environmental interpretation, predictive analytics for heterogeneous environmental data, and conversational agents for reflective learning. Preliminary tests show that AI-powered predictive models aid pattern recognition and foster participant reflection. The proposed framework outlines principles for modular AI integration, emphasizing user-centered design, ethical data practices, and alignment with STEM education goals. It establishes a foundation for AI-supported citizen science education, aiming to foster critical thinking, civic participation and proactive environmental stewardship.","PeriodicalId":38963,"journal":{"name":"Revista Iberoamericana de Tecnologias del Aprendizaje","volume":"20 ","pages":"200-208"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Iberoamericana de Tecnologias del Aprendizaje","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11126032/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Citizen science projects that use Internet of Things (IoT) devices are transforming environmental education by enabling real-time, participatory data collection. However, few initiatives integrate Artificial Intelligence (AI) to support the analysis and prediction of environmental dynamics, as well as their interpretation and deeper learning outcomes. This article presents a framework for incorporating AI into IoT-based citizen science educational systems, exemplified by the SKILIKET project. SKILIKET combines quantitative sensor data (e.g., temperature, CO2, humidity, UV, and noise) with qualitative human observations (e.g., perceived smells, sounds, and visual cues) collected via a mobile app to help participants better understand socioecological phenomena in their environments. Using a Design-Based Research (DBR) approach, the study explores AI functionalities that could support environmental interpretation, predictive analytics for heterogeneous environmental data, and conversational agents for reflective learning. Preliminary tests show that AI-powered predictive models aid pattern recognition and foster participant reflection. The proposed framework outlines principles for modular AI integration, emphasizing user-centered design, ethical data practices, and alignment with STEM education goals. It establishes a foundation for AI-supported citizen science education, aiming to foster critical thinking, civic participation and proactive environmental stewardship.
公民科学中的人工智能集成框架:来自SKILIKET项目的见解
使用物联网(IoT)设备的公民科学项目通过实现实时、参与式数据收集,正在改变环境教育。然而,很少有举措整合人工智能(AI)来支持环境动态的分析和预测,以及它们的解释和更深层次的学习结果。本文提出了一个将人工智能纳入基于物联网的公民科学教育系统的框架,以SKILIKET项目为例。SKILIKET将定量传感器数据(如温度、二氧化碳、湿度、紫外线和噪音)与通过移动应用收集的定性人类观察数据(如感知的气味、声音和视觉线索)结合起来,帮助参与者更好地了解其环境中的社会生态现象。该研究采用基于设计的研究(DBR)方法,探索了可以支持环境解释、异构环境数据预测分析和反思性学习对话代理的人工智能功能。初步测试表明,人工智能预测模型有助于模式识别,并促进参与者的反思。拟议的框架概述了模块化人工智能集成的原则,强调以用户为中心的设计,道德数据实践以及与STEM教育目标的一致性。它为人工智能支持的公民科学教育奠定了基础,旨在培养批判性思维、公民参与和积极的环境管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信