PowderMEMS® magnets as enabler for miniaturized NV based quantum sensors and quantum processor architectures

IF 3.1 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mario Bähr , Björn Gojdka , Thomas Lisec , Niels Clausen , Mani Teja Bodduluri , Aya Zino , Indira Käpplinger , Dominik Karolewski , Jan Meijer , Thomas Ortlepp
{"title":"PowderMEMS® magnets as enabler for miniaturized NV based quantum sensors and quantum processor architectures","authors":"Mario Bähr ,&nbsp;Björn Gojdka ,&nbsp;Thomas Lisec ,&nbsp;Niels Clausen ,&nbsp;Mani Teja Bodduluri ,&nbsp;Aya Zino ,&nbsp;Indira Käpplinger ,&nbsp;Dominik Karolewski ,&nbsp;Jan Meijer ,&nbsp;Thomas Ortlepp","doi":"10.1016/j.mne.2025.100316","DOIUrl":null,"url":null,"abstract":"<div><div>The implementation of PowderMEMS® micromagnets of varying shapes, with lateral dimensions of 700 μm and 800 μm, into 2.3 × 2.3 × 0.525 mm<sup>3</sup> silicon chips has been demonstrated successfully. These chips have been utilized as functionalized interposer for micro-scaled quantum devices. PowderMEMS® micromagnets offer a high biasing magnetic field flux density ranging from 30 mT to 35 mT over a distance of 100 μm depending on the size and shape of the micromagnets. This magnetic field strength (<em>B</em><sub>Z</sub>) was proven by room temperature ODMR measurements with NV centers in diamond: <em>B</em><sub>Z</sub> was measured over a range of distances, extending to 6 mm from the center of the micromagnets. The evaluation involved the analysis of Zeeman splitting. Furthermore, a Hall measurement setup was employed to map the lateral distribution of the magnetic field strength.</div></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"28 ","pages":"Article 100316"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259000722500022X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The implementation of PowderMEMS® micromagnets of varying shapes, with lateral dimensions of 700 μm and 800 μm, into 2.3 × 2.3 × 0.525 mm3 silicon chips has been demonstrated successfully. These chips have been utilized as functionalized interposer for micro-scaled quantum devices. PowderMEMS® micromagnets offer a high biasing magnetic field flux density ranging from 30 mT to 35 mT over a distance of 100 μm depending on the size and shape of the micromagnets. This magnetic field strength (BZ) was proven by room temperature ODMR measurements with NV centers in diamond: BZ was measured over a range of distances, extending to 6 mm from the center of the micromagnets. The evaluation involved the analysis of Zeeman splitting. Furthermore, a Hall measurement setup was employed to map the lateral distribution of the magnetic field strength.

Abstract Image

PowderMEMS®磁体是小型化基于NV的量子传感器和量子处理器架构的推动者
在2.3 × 2.3 × 0.525 mm3硅芯片上成功实现了横向尺寸为700 μm和800 μm的不同形状的PowderMEMS®微磁体。这些芯片已被用作微尺度量子器件的功能化中间体。PowderMEMS®微磁体提供高偏置磁场磁通密度,范围为30 mT至35 mT,距离为100 μm,具体取决于微磁体的尺寸和形状。这种磁场强度(BZ)是通过金刚石中NV中心的室温ODMR测量来证明的:BZ是在距离微磁体中心6毫米的距离范围内测量的。评价包括对塞曼分裂的分析。此外,采用霍尔测量装置来绘制磁场强度的横向分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信