L. Donetti, C. Medina-Bailon, J.L. Padilla, C. Sampedro, F. Gamiz
{"title":"MULHACEN, enhanced multi-subband Monte Carlo simulator for nonplanar FETs","authors":"L. Donetti, C. Medina-Bailon, J.L. Padilla, C. Sampedro, F. Gamiz","doi":"10.1016/j.sse.2025.109213","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present <span>Mulhacen</span>, a 3D multi-subband simulator developed for the accurate study of nonplanar devices which are at the core of present and future technology nodes. It allows to consider electrons in different conduction band valleys and, among its main features, we can highlight the accurate evaluation of quantum effects in the plane transverse to transport through the solution of the 2D Schrödinger equation in several device cross sections, as well as Monte Carlo description of transport. The simulator is based on a finite elements discretization, which allows an accurate description of realistic device geometries.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109213"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001583","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present Mulhacen, a 3D multi-subband simulator developed for the accurate study of nonplanar devices which are at the core of present and future technology nodes. It allows to consider electrons in different conduction band valleys and, among its main features, we can highlight the accurate evaluation of quantum effects in the plane transverse to transport through the solution of the 2D Schrödinger equation in several device cross sections, as well as Monte Carlo description of transport. The simulator is based on a finite elements discretization, which allows an accurate description of realistic device geometries.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.