Jinyi Wang , Yian Yin , Qiao Sun , Chunxiao Zhao , Qian Zeng , Jiahao Du , Yele Qu , Tiankai Wang , Nan Jiang
{"title":"An All-GaN cascode device with integrated plane-parallel capacitor with high dynamic breakdown voltage and high switching performance","authors":"Jinyi Wang , Yian Yin , Qiao Sun , Chunxiao Zhao , Qian Zeng , Jiahao Du , Yele Qu , Tiankai Wang , Nan Jiang","doi":"10.1016/j.sse.2025.109219","DOIUrl":null,"url":null,"abstract":"<div><div>All-GaN Cascode devices have been shown to have higher switching speeds than standalone E-mode devices. However, during the switching process of the device, the breakdown voltage drops significantly, this will greatly reduce the reliability of the device, especially in the presence of voltage overshoot. In this paper, an All-GaN Cascode structure with integrated plane-parallel capacitor structure is proposed, and the breakdown voltage in the switching process is referred to as the dynamic breakdown voltage. The test results show that the dynamic breakdown voltage is increased from 497 V to 639 V compared with the conventional structure. In addition, a dual-pulse test circuit is set up to test the switching performance of All-GaN Cascode devices under different conditions, it is proved that the series structure of All-GaN Cascode device can reduce the deterioration of switching performance caused by the increase of capacitance. The above results indicate that All-GaN Cascode devices may have great application potential in high speed and high voltage switching circuits.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"229 ","pages":"Article 109219"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001649","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
All-GaN Cascode devices have been shown to have higher switching speeds than standalone E-mode devices. However, during the switching process of the device, the breakdown voltage drops significantly, this will greatly reduce the reliability of the device, especially in the presence of voltage overshoot. In this paper, an All-GaN Cascode structure with integrated plane-parallel capacitor structure is proposed, and the breakdown voltage in the switching process is referred to as the dynamic breakdown voltage. The test results show that the dynamic breakdown voltage is increased from 497 V to 639 V compared with the conventional structure. In addition, a dual-pulse test circuit is set up to test the switching performance of All-GaN Cascode devices under different conditions, it is proved that the series structure of All-GaN Cascode device can reduce the deterioration of switching performance caused by the increase of capacitance. The above results indicate that All-GaN Cascode devices may have great application potential in high speed and high voltage switching circuits.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.