Wanrong Hu, Li Liu, Jiabao Zhang, Quanwei Zhou, Zhongrong Jiang, Yun Jia, Qianying Zhang, Dongliang Li
{"title":"Development and mechanism study of functional fermentation media for reducing alkaloid content in cigar tobacco leaves","authors":"Wanrong Hu, Li Liu, Jiabao Zhang, Quanwei Zhou, Zhongrong Jiang, Yun Jia, Qianying Zhang, Dongliang Li","doi":"10.1186/s40538-025-00847-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Elevated alkaloid levels in tobacco leaves can cause significant irritation and a pronounced bitterness. Fermentation is a well-recognized strategy to reduce alkaloid content. However, its effectiveness is influenced by the choice of fermentation media. The limited variety of available media complicates the ability to meet the specific formulation requirements of cigar products. Consequently, there is a need to develop additional media to tailor formulations that optimize fermentation outcomes.</p><h3>Results</h3><p>The fermentation media developed in this study were primarily composed of compounds including chlorogenic acid, liquiritin, schaftoside, and ganoderic acid. The fermentation of cigar tobacco leaves with a medium led to a reduction in total nitrogen and alkaloid levels, while simultaneously enhancing both total sugar and reducing sugar contents. Specifically, compared to the control group, the alkaloid content in tobacco leaves treated with the medium decreased by 9.58–19.06%. Furthermore, the addition of the medium resulted in an increase in aroma compounds, while the levels of unsaturated fatty acids decreased by 7.14–24.66%. The medium also elevated the contents of characteristic aroma components, including 3-hydroxy-5,6-epoxy-β-ionol, megastigmatrienone, β-dihydroionone, dihydroactinidiolide, and sclareolide. Additionally, the introduction of the medium altered the bacterial and fungal community structures within the cigar tobacco leaves. It also facilitated the proliferation of functional microorganisms such as <i>Acinetobacter, Enterobacter, Pseudomonas, Wickerhamomyces,</i> and <i>Wallemia.</i> Correlation analysis indicated a positive relationship between the enrichment of these functional microorganisms and the increased levels of aroma compounds, such as 3-hydroxy-5,6-epoxy-β-ionol. From a sensory perspective, the incorporation of the medium reduced irritation and undesirable odors in cigar tobacco leaves, while enhancing the sweetness and richness of the aroma.</p><h3>Conclusions</h3><p>The specialized media developed in this study represent an innovative approach to optimizing cigar tobacco fermentation. This method utilizes unique raw materials and bioactive compounds to coordinate microbial activity, reduce alkaloid level, enhance aroma components, and improve sensory attributes. From an application standpoint, these media could be seamlessly integrated into cigar processing lines to enhance product quality with minimal modifications to existing equipment. The findings of this study offer novel perspectives on the reduction of alkaloid content in tobacco and the advancement of functional media.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00847-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00847-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Elevated alkaloid levels in tobacco leaves can cause significant irritation and a pronounced bitterness. Fermentation is a well-recognized strategy to reduce alkaloid content. However, its effectiveness is influenced by the choice of fermentation media. The limited variety of available media complicates the ability to meet the specific formulation requirements of cigar products. Consequently, there is a need to develop additional media to tailor formulations that optimize fermentation outcomes.
Results
The fermentation media developed in this study were primarily composed of compounds including chlorogenic acid, liquiritin, schaftoside, and ganoderic acid. The fermentation of cigar tobacco leaves with a medium led to a reduction in total nitrogen and alkaloid levels, while simultaneously enhancing both total sugar and reducing sugar contents. Specifically, compared to the control group, the alkaloid content in tobacco leaves treated with the medium decreased by 9.58–19.06%. Furthermore, the addition of the medium resulted in an increase in aroma compounds, while the levels of unsaturated fatty acids decreased by 7.14–24.66%. The medium also elevated the contents of characteristic aroma components, including 3-hydroxy-5,6-epoxy-β-ionol, megastigmatrienone, β-dihydroionone, dihydroactinidiolide, and sclareolide. Additionally, the introduction of the medium altered the bacterial and fungal community structures within the cigar tobacco leaves. It also facilitated the proliferation of functional microorganisms such as Acinetobacter, Enterobacter, Pseudomonas, Wickerhamomyces, and Wallemia. Correlation analysis indicated a positive relationship between the enrichment of these functional microorganisms and the increased levels of aroma compounds, such as 3-hydroxy-5,6-epoxy-β-ionol. From a sensory perspective, the incorporation of the medium reduced irritation and undesirable odors in cigar tobacco leaves, while enhancing the sweetness and richness of the aroma.
Conclusions
The specialized media developed in this study represent an innovative approach to optimizing cigar tobacco fermentation. This method utilizes unique raw materials and bioactive compounds to coordinate microbial activity, reduce alkaloid level, enhance aroma components, and improve sensory attributes. From an application standpoint, these media could be seamlessly integrated into cigar processing lines to enhance product quality with minimal modifications to existing equipment. The findings of this study offer novel perspectives on the reduction of alkaloid content in tobacco and the advancement of functional media.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.